

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Kingpin 0.4.0 documentation

Kingpin: Deployment Automation Engine

Kingpin: the chief element of any system, plan, or the like.

Kingpin provides 3 main functions:

	API Abstraction - Job instructions are provided to Kingpin via a
JSON based DSL (read below). The schema is strict and consistent from
one action to another.

	Automation Engine - Kingpin leverages python’s
tornado [http://tornado.readthedocs.org/] engine.

	Parallel Execution - Aside from non-blocking network IO, Kingpin
can execute any action in parallel with another. (Read group.Async
below)

	Installation
	Github Checkout/Install

	Direct PIP Install

	Zip File Packaging

	Basic Use
	Credentials

	JSON/YAML DSL
	Validation

	The Script

	Command-line Execution without JSON

	Actors
	Amazon Web Services
	Documentation

	CloudFormation

	Elastic Load Balancing (ELB)

	Identity and Access Management (IAM)

	Simple Storage Service (S3)

	Simple Queue Service (SQS)

	Grouping Actors
	Async

	Sync

	Hipchat
	Message

	Topic

	Librato
	Annotation

	Miscellaneous
	Macro

	Sleep

	GenericHTTP

	PackageCloud
	Documentation

	Delete

	DeleteByDate

	WaitForPackage

	Pingdom
	Pause

	Unpause

	RightScale
	Documentation

	Deployment

	Alert Specs

	Server Arrays

	Multi Cloud Images

	Rollbar
	Deploy

	Slack
	Message

	Security
	URLLIB3 Warnings Disabled

	Development
	Setting up your Environment
	Create your VirtualEnvironment

	Check out the code

	Install the test-specific dependencies

	Testing
	Unit Tests

	Integration Tests

	Class/Object Architecture

	Actor Design
	Example - Hello World

	Actor Parameters

	Required Methods

	Recommended Design Patterns

	Helper Methods/Objects

	Exception Handling

	Simple API Access Objects
	HTTPBin Actor with the RestConsumer

	Exception Handling in HTTP Requests

	Full Module Docs
	kingpin.actors.aws.base

	kingpin.actors.aws.cloudformation

	kingpin.actors.aws.elb

	kingpin.actors.aws.iam

	kingpin.actors.aws.settings

	kingpin.actors.aws.sqs

	kingpin.actors.aws.s3

	kingpin.actors.base

	kingpin.actors.exceptions

	kingpin.actors.group

	kingpin.actors.hipchat

	kingpin.actors.librato

	kingpin.actors.misc

	kingpin.actors.packagecloud

	kingpin.actors.pingdom

	kingpin.actors.rightscale.api

	kingpin.actors.rightscale.base

	kingpin.actors.rightscale.server_array

	kingpin.actors.rollbar

	kingpin.actors.slack

	kingpin.actors.utils

	kingpin.utils

	Index

	Module Index

	Search Page

 Copyright 2015, Nextdoor.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Kingpin 0.4.0 documentation

Installation

The simplest installation method is via
PyPI [https://pypi.python.org/pypi/kingpin].

$ pip install --process-dependency-links kingpin

Note, we strongly recommend running the code inside a Python virtual
environment. All of our examples below will show how to do this.

Github Checkout/Install

$ virtualenv .venv --no-site-packages
New python executable in .venv/bin/python
Installing setuptools, pip...done.
$ source .venv/bin/activate
(.venv) $ git clone https://github.com/Nextdoor/kingpin
Cloning into 'kingpin'...
remote: Counting objects: 1824, done.
remote: Compressing objects: 100% (10/10), done.
remote: Total 1824 (delta 4), reused 0 (delta 0)
Receiving objects: 100% (1824/1824), 283.35 KiB, done.
Resolving deltas: 100% (1330/1330), done.
(.venv)$ cd kingpin/
(.venv)$ python setup.py install
zip_safe flag not set; analyzing archive contents...
...

Direct PIP Install

$ virtualenv .venv --no-site-packages
New python executable in .venv/bin/python
Installing setuptools, pip...done.
$ source .venv/bin/activate
(.venv) $ git clone https://github.com/Nextdoor/kingpin
(.venv)$ pip install --process-dependency-links git+https://github.com/Nextdoor/kingpin.git
Downloading/unpacking git+https://github.com/Nextdoor/kingpin.git
 Cloning https://github.com/Nextdoor/kingpin.git (to master) to /var/folders/j6/qyd2dp6n3f156h6xknndt35m00010b/T/pip-H9LwNt-build
...

Zip File Packaging

For the purpose of highly reliable and fast installations, you can also execute
make package to generate a Python-executable .zip file. This file is built
with all of the dependencies installed inside of it, and can be executed on the
command line very simply:

$ virtualenv .venv --no-site-packages
New python executable in .venv/bin/python
Installing setuptools, pip...done.
$ source .venv/bin/activate
$ make kingpin.zip
$ python kingpin.zip --version
0.2.5

VirtualEnv Note

Its not strictly necessary to set up the virtual environment like we did in the
example above – but it helps prevent any confusion during the build
process around what packages are available or are not.

 Copyright 2015, Nextdoor.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Kingpin 0.4.0 documentation

Basic Use

$ kingpin --help
usage: kingpin [-h] [-s JSON/YAML] [-a ACTOR] [-E] [-p PARAMS] [-o OPTIONS] [-d]
 [--build-only] [-l LEVEL] [-D] [-c]

Kingpin v0.3.1a

optional arguments:
 -h, --help show this help message and exit
 -s SCRIPT, --script SCRIPT Path to JSON/YAML Deployment Script
 -a ACTOR, --actor ACTOR
 Name of an Actor to execute (overrides --script)
 -E, --explain Explain how an actor works. Requires --actor.
 -p PARAMS, --param PARAMS
 Actor Parameter to set (ie, warn_on_failure=true)
 -o OPTIONS, --option OPTIONS
 Actor Options to set (ie, elb_name=foobar)
 -d, --dry Executes a dry run only.
 --build-only Compile the input script without executing any runs
 -l LEVEL, --level LEVEL
 Set logging level (INFO|WARN|DEBUG|ERROR)
 -D, --debug Equivalent to --level=DEBUG
 -c, --color Colorize the log output

The simplest use cases of this code can be better understood by looking at the
simple.json file. Executing it is a
simple as this:

$ export RIGHTSCALE_TOKEN=xyz
$ export RIGHTSCALE_ENDPOINT=https://us-3.rightscale.com
$ (.venv)$ kingpin -s examples/simple.json -d
2014-09-01 21:18:09,022 INFO [main stage (DRY Mode)] Beginning
2014-09-01 21:18:09,022 INFO [stage 1 (DRY Mode)] Beginning
2014-09-01 21:18:09,022 INFO [copy serverA (DRY Mode)] Beginning
2014-09-01 21:18:09,023 INFO [copy serverB (DRY Mode)] Beginning
2014-09-01 21:18:09,027 INFO [copy serverC (DRY Mode)] Beginning
2014-09-01 21:18:09,954 INFO [copy serverA (DRY Mode)] Verifying that array "kingpin-integration-testing" exists
...
2014-09-01 21:18:14,533 INFO [stage 3 (DRY Mode)] Finished, success? True
2014-09-01 21:18:14,533 INFO [main stage (DRY Mode)] Finished, success? True

Kingpin always executes a dry run before executing. Each actor specifies their
own definition of a dry run. Actors are designed to do as much checking in the
dry run as possible to assure that everything will work during real execution.

It’s possible, with extreme discouragement to skip the default dry run by
setting SKIP_DRY environment variable.

Credentials

In an effort to keep the commandline interface of Kingpin simple, the majority
of the configuration settings used at runtime are actually set as environment
variables. Individual Kingpin Actors have their credential requirements
documented in their specific documentation (see below).

JSON/YAML DSL

The entire model for the configuration is based on the concept of a JSON or
YAML dictionary that contains at least one actor configuration. This
format is highly structured and must rigidly conform to the
kingpin.schema.

Validation

The script will be validated for schema-conformity as one of the first
things that happens at load-time when the app starts up. If it fails, you will
be notified immediately. This is performed in misc.Macro actor.

The Script

Definition: The blueprint or roadmap that outlines a movie story through
visual descriptions, actions of characters and their dialogue. The term
“script” also applies to stageplays as well.

Every Kingpin script is a chunk of JSON or YAML-encoded data that contains
actors. Each actor configuration includes the same three parameters:
actor, and optional desc, and options.

The simplest script will have a single configuration that executes a single
actor. More complex scripts can be created with our group.Sync and
group.Async actors which can be used to group together multiple actors and
execute them in a predictable order.

Schema Description

The schema is simple. We take a single JSON or YAML object that has a few
fields:

	actor - A text-string describing the name of the Actor package
and class. For example, rightscale.server_array.Clone, or misc.Sleep.

	condition - A bool or string that indicates whether or not to
execute this actor. Most commonly used with a token variable for its value.

	desc - A text-string describing the name of the stage or action.
Meant to ensure that the logs are very human readable. Optional; a
default description is chosen if you do not supply one.

	warn_on_failure - True/False whether or not to ignore an Actors
failure and return True anyways. Defaults to False, but if True
a warning message is logged.

	timeout - Maximum time (in seconds) for the actor to execute
before raising an ActorTimedOut exception.

	options - A dictionary of key/value pairs that are required for
the specific actor that you’re instantiating. See individual Actor
documentation below for these options.

The simplest JSON file could look like this:

{ "actor": "hipchat.Message",
 "condition": "true",
 "warn_on_failure": true,
 "timeout": 30,
 "options": {
 "message": "Beginning release %RELEASE%", "room": "Oncall"
 }
}

Alternatively, a YAML file would look like this:

actor: hipchat.Message
condition: true
warn_on_failure: true
timeout: 30
options:
 message: Beginning release %RELEASE%
 room: Oncall

To execute multiple actors in one script you should leverage one of grouping
actors such as group.Sync or group.Async. These actors have their own
options documented below.

There is an array short hand for group.Sync for trivial set of actors.

- actor: hipchat.Message
 options:
 message: Beginning release %RELEASE%
 room: Oncall
- actor: next.Actor
 options:
 release_version: version-%RELEASE%

Conditional Execution

The base.BaseActor definition supports a condition parameter that can be
used to enable or disable execution of an actor in a given Kingpin run. The
field defaults to enabled, but takes many different values which allow you to
choose whether or not to execute portions of your script.

Conditions that behave as False:

0, '0', 'False', 'FALse', 'FALSE'

Conditions that behave as True:

'any string', 'true', 'TRUE', '1', 1

Example usage:

{ "actor": "hipchat.Message",
 "condition": "%SEND_MESSAGE%",
 "warn_on_failure": true,
 "options": {
 "message": "Beginning release %RELEASE%", "room": "Oncall"
 }
}

JSON Commenting

Because these JSON scripts can get quite large, Kingpin leverages the
demjson package to parse your script. This package is slightly more graceful
when handling syntax issues (extra commas, for example), and allows for
JavaScript style commenting inside of the script.

Alternatively, if you’re using YAML then you automatically get slightly easier
syntax parsing, code commenting, etc.

Take this example:

{ "actor": "misc.Sleep",

 /* Cool description */
 "desc": 'This is funny',

 /* This shouldn't end with a comma, but does */
 "options": { "time": 30 }, }

The above example would fail to parse in most JSON parsers, but in demjson
it works just fine. You could also write this in YAML:

actor: misc.Sleep
Some description here...
desc: This is funny

Comments are good!
options:
 time: 30

Timeouts

By default, Kingpin actors are set to timeout after 3600s (1 hour). Each
indivudal actor will raise an ActorTimedOut exception after this timeout has
been reached. The ActorTimedOut exception is considered a
RecoverableActorFailure, so the warn_on_failure setting applies here and
thus the failure can be ignored if you choose to.

Additionally, you can override the global default setting on the commandline
with an environment variable:

	DEFAULT_TIMEOUT - Time (in seconds) to use as the default actor
timeout.

Here is an example log output when the timer is exceeded:

$ DEFAULT_TIMEOUT=1 SLEEP=10 kingpin -s examples/sleep.json
11:55:16 INFO Rehearsing... Break a leg!
11:55:16 INFO [DRY: Kingpin] Preparing actors from examples/sleep.json
11:55:16 INFO Rehearsal OK! Performing!
11:55:16 INFO Lights, camera ... action!
11:55:16 INFO [Kingpin] Preparing actors from examples/sleep.json
11:55:17 ERROR [Kingpin] kingpin.actors.misc.Macro._execute() execution exceeded deadline: 1s
11:55:17 ERROR [Sleep for some amount of time] kingpin.actors.misc.Sleep._execute() execution exceeded deadline: 1s
11:55:17 CRITICAL [Kingpin] kingpin.actors.misc.Macro._execute() execution exceeded deadline: 1s
11:55:17 CRITICAL [Sleep for some amount of time] kingpin.actors.misc.Sleep._execute() execution exceeded deadline: 1s
11:55:17 ERROR Kingpin encountered mistakes during the play.
11:55:17 ERROR kingpin.actors.misc.Macro._execute() execution exceeded deadline: 1s

Disabling the Timeout

You can disable the timeout on any actor by setting timeout: 0 in
your JSON.

Group Actor Timeouts

Group actors are special – as they do nothing but execute other actors.
Although they support the timeout: x setting, they default to disabling the
timeout (timeout: 0). This is done because the individual timeouts are
generally owned by the individual actors. A single actor that fails will
propagate its exception up the chain and through the Group actor just like any
other actor failure.

As an example... If you take the following example code:

{ "desc": "Outer group",
 "actor": "group.Sync",
 "options": {
 "acts": [
 { "desc": "Sleep 10 seconds, but fail",
 "actor": "misc.Sleep",
 "timeout": 1,
 "warn_on_failure": true,
 "options": {
 "sleep": 10
 }
 },
 { "desc": "Sleep 2 seconds, but don't fail",
 "actor": "misc.Sleep",
 "options": {
 "sleep": 2
 }
 }
]
 }
}

The first misc.Sleep actor will fail, but only warn (warn_on_failure=True)
about the failure. The parent group.Sync actor will continue on and allow the
second misc.Sleep actor to continue.

Token-replacement

Environmental Tokens

In an effort to allow for more re-usable JSON files, tokens can be inserted
into the JSON/YAML file like this %TOKEN_NAME%. These will then be
dynamically swapped with environment variables found at execution time. Any
missing environment variables will cause the JSON parsing to fail and will
notify you immediately.

For an example, take a look at the complex.json file, and these examples of execution.

Here we forget to set any environment variables
$ kingpin -s examples/complex.json -d
2014-09-01 21:29:47,373 ERROR Invalid Configuration Detected: Found un-matched tokens in JSON string: ['%RELEASE%', '%OLD_RELEASE%']

Here we set one variable, but miss the other one
$ RELEASE=0001a kingpin -s examples/complex.json -d
2014-09-01 21:29:56,027 ERROR Invalid Configuration Detected: Found un-matched tokens in JSON string: ['%OLD_RELEASE%']

Finally we set both variables and the code begins...
$ OLD_RELEASE=0000a RELEASE=0001a kingpin -s examples/complex.json -d
2014-09-01 21:30:03,886 INFO [Main (DRY Mode)] Beginning
2014-09-01 21:30:03,886 INFO [Hipchat: Notify Oncall Room (DRY Mode)] Beginning
2014-09-01 21:30:03,886 INFO [Hipchat: Notify Oncall Room (DRY Mode)] Sending message "Beginning release 0001a" to Hipchat room "Oncall"
...

Deep Nested Tokens and Macros (new in 0.4.0)

In order to allow for more complex Kingpin script definitions with
misc.Macro, group.Sync and group.Async actors,
Kingpin allows for environmental and manually defined tokens to be passed down
from actor to actor. Here’s a fairly trivial example. Take this simple
sleeper.json example that relies on a %SLEEP% and %DESC% token.

sleeper.json

{ "actor": "misc.Sleep",
 "desc": "Sleeping because %DESC%",
 "options": {
 "sleep": "%SLEEP%"
 }
}

One way to run this would be via the command line with the $SLEEP
and $DESC environment variable set (output stripped a bit for
readability):

$ SKIP_DRY=1 DESC=pigs SLEEP=0.1 kingpin --debug --script sleeper.json
[Kingpin] Checking for required options: ['macro']
[Kingpin] Initialized (warn_on_failure=False, strict_init_context=True)
[Kingpin] Preparing actors from sleeper.json
[Kingpin] Parsing <open file u'sleeper.json', mode 'r' at 0x10c8ad150>
[Kingpin] Validating schema for sleeper.json
Building Actor "misc.Sleep" with args: {'init_tokens': '<hidden>', u'options': {u'sleep': u'0.1'}, u'desc': u'Sleeping because pigs'}
[Sleeping because pigs] Checking for required options: ['sleep']
[Sleeping because pigs] Initialized (warn_on_failure=False, strict_init_context=True)

Lights, camera ... action!

[Kingpin] Beginning
[Kingpin] Condition True evaluates to True
[Kingpin] kingpin.actors.misc.Macro._execute() deadline: None(s)
[Sleeping because pigs] Beginning
[Sleeping because pigs] Condition True evaluates to True
[Sleeping because pigs] kingpin.actors.misc.Sleep._execute() deadline: 3600(s)
[Sleeping because pigs] Sleeping for 0.1 seconds
[Sleeping because pigs] Finished successfully, return value: None
[Sleeping because pigs] kingpin.actors.misc.Sleep.execute() execution time: 0.11s
[Kingpin] Finished successfully, return value: None
[Kingpin] kingpin.actors.misc.Macro.execute() execution time: 0.11s

Another way to run this would be with a wrapper script that sets the %DESC%
for you, but still leaves the %SLEEP% token up to you:

wrapper.json

{ "actor": "misc.Macro",
 "options": {
 "macro": "sleeper.json",
 "tokens": {
 "DESC": "flying-pigs"
 }
 }
}

Now, watch us instantiate this wrapper - with $DESC and $SLEEP set.
Notice how %DESC% is overridden by the token from the JSON wrapper?

$ SKIP_DRY=1 DESC=pigs SLEEP=0.1 kingpin --debug --script wrapper.json

[Kingpin] Checking for required options: ['macro']
[Kingpin] Initialized (warn_on_failure=False, strict_init_context=True)
[Kingpin] Preparing actors from wrapper.json
[Kingpin] Parsing <open file u'wrapper.json', mode 'r' at 0x10f52f150>
[Kingpin] Validating schema for wrapper.json
Building Actor "misc.Macro" with args: {'init_tokens': '<hidden>', u'options': {u'tokens': {u'DESC': u'flying-pigs'}, u'macro': u'sleeper.json'}}
[Macro: sleeper.json] Checking for required options: ['macro']
[Macro: sleeper.json] Initialized (warn_on_failure=False, strict_init_context=True)
[Macro: sleeper.json] Preparing actors from sleeper.json
[Macro: sleeper.json] Parsing <open file u'sleeper.json', mode 'r' at 0x10f52f1e0>
[Macro: sleeper.json] Validating schema for sleeper.json
Building Actor "misc.Sleep" with args: {'init_tokens': '<hidden>', u'options': {u'sleep': u'0.1'}, u'desc': u'Sleeping because flying-pigs'}
[Sleeping because flying-pigs] Checking for required options: ['sleep']
[Sleeping because flying-pigs] Initialized (warn_on_failure=False, strict_init_context=True)

Lights, camera ... action!

[Kingpin] Beginning
[Kingpin] Condition True evaluates to True
[Kingpin] kingpin.actors.misc.Macro._execute() deadline: None(s)
[Macro: sleeper.json] Beginning
[Macro: sleeper.json] Condition True evaluates to True
[Macro: sleeper.json] kingpin.actors.misc.Macro._execute() deadline: None(s)
[Sleeping because flying-pigs] Beginning
[Sleeping because flying-pigs] Condition True evaluates to True
[Sleeping because flying-pigs] kingpin.actors.misc.Sleep._execute() deadline: 3600(s)
[Sleeping because flying-pigs] Sleeping for 0.1 seconds
[Sleeping because flying-pigs] Finished successfully, return value: None
[Sleeping because flying-pigs] kingpin.actors.misc.Sleep.execute() execution time: 0.10s
[Macro: sleeper.json] Finished successfully, return value: None
[Macro: sleeper.json] kingpin.actors.misc.Macro.execute() execution time: 0.10s
[Kingpin] Finished successfully, return value: None
[Kingpin] kingpin.actors.misc.Macro.execute() execution time: 0.11s

Contextual Tokens

Once the initial JSON files have been loaded up, we have a second layer of
tokens that can be referenced. These tokens are known as contextual tokens.
These contextual tokens are used during-runtime to swap out strings with
variables. Currently only the group.Sync and group.Async actors have the
ability to define usable tokens, but any actor can then reference these tokens.

Contextual tokens for simple variable behavior

{ "desc": "Send out hipchat notifications",
 "actor": "group.Sync",
 "options": {
 "contexts": [{ "ROOM": "Systems" }],
 "acts": [
 { "desc": "Notify {ROOM}",
 "actor": "hipchat.Message",
 "options": {
 "room": "{ROOM}",
 "message": "Hey room .. I'm done with something"
 }
 }
]
 }
}

2015-01-14 15:03:16,840 INFO [DRY: Send out hipchat notifications] Beginning 1 actions
2015-01-14 15:03:16,840 INFO [DRY: Notify Systems] Sending message "Hey room .. I'm done with something" to Hipchat room "Systems"

Contextual tokens used for iteration

{ "actor": "group.Async",
 "options": {
 "contexts": [
 { "ROOM": "Engineering", "WISDOM": "Get back to work" },
 { "ROOM": "Cust Service", "WISDOM": "Have a nice day" }
],
 "acts": [
 { "desc": "Notify {ROOM}",
 "actor": "hipchat.Message",
 "options": {
 "room": "{ROOM}",
 "message": "Hey room .. I'm done with the release. {WISDOM}"
 }
 }
]
 }
}

2015-01-14 15:02:22,165 INFO [DRY: kingpin.actor.group.Async] Beginning 2 actions
2015-01-14 15:02:22,165 INFO [DRY: Notify Engineering] Sending message "Hey room .. I'm done with the release. Get back to work" to Hipchat room "Engineering"
2015-01-14 15:02:22,239 INFO [DRY: Notify Cust Service] Sending message "Hey room .. I'm done with the release. Have a nice day" to Hipchat room "Cust Service"

Contextual tokens stored in separate file

When multiple Kingpin JSON files need to leverage the same context for
different purposes it is useful to put the contexts into a stand alone file and
then reference that file. Context files support token-replacement just like
misc.Macro actor. See example below.

kingpin.json

{ "desc": "Send ending notifications...",
 "actor": "group.Async",
 "options": {
 "contexts": "data/notification-rooms.json",
 "acts": [
 { "desc": "Notify {ROOM}",
 "actor": "hipchat.Message",
 "options": {
 "room": "{ROOM}",
 "message": "Hey room .. I'm done with the release. {WISDOM}"
 }
 }
]
 }
}

data/notification-rooms.json

[
 { "ROOM": "Engineering", "WISDOM": "%USER% says: Get back to work" },
 { "ROOM": "Cust Service", "WISDOM": "%USER% says: Have a nice day" }
]

Early Actor Instantiation

Again, in an effort to prevent mid-run errors, we pre-instantiate all Actor
objects all at once before we ever begin executing code. This ensures that
major typos or misconfigurations in the JSON will be caught early on.

You can test the correctness of all actor instantiation without executing
a run or a dry-run by passing in the --build-only flag. Kingpin will exit
with status 0 on success and status 1 if any actor instantiations have failed.

Command-line Execution without JSON

For the simple case of executing a single actor without too many options, you
are able to pass these options in on the commandline to avoid writing any JSON.

$ kingpin --actor misc.Sleep --explain
Sleeps for an arbitrary number of seconds.

Options

:sleep:
 Integer of seconds to sleep.

Examples

.. code-block:: json

 { "actor": "misc.Sleep",
 "desc": "Sleep for 60 seconds",
 "options": {
 "sleep": 60
 }
 }

Dry Mode

Fully supported -- does not actually sleep, just pretends to.

--explain provides the same text that is available in this used in this
documentation.

$ kingpin --actor misc.Sleep --param warn_on_failure=true --option sleep=5
17:54:53 INFO Rehearsing... Break a leg!
17:54:53 INFO [DRY: Kingpin] Preparing actors from {"actor":"misc.Sleep","desc":"Commandline Execution","options":{"sleep":"5"},"warn_on_failure":"true"}
17:54:53 INFO Rehearsal OK! Performing!
17:54:53 INFO [Kingpin] Preparing actors from {"actor":"misc.Sleep","desc":"Commandline Execution","options":{"sleep":"5"},"warn_on_failure":"true"}
17:54:53 INFO
17:54:53 WARNING Lights, camera ... action!
17:54:53 INFO

You can stack as many --option and --param command line options as you wish.

$ kingpin --actor misc.Sleep --param warn_on_failure=true --param condition=false --option "sleep=0.1"
17:59:46 INFO Rehearsing... Break a leg!
17:59:46 INFO [DRY: Kingpin] Preparing actors from {"actor":"misc.Sleep","condition":"false","desc":"Commandline Execution","options":{"sleep":"0.1"},"warn_on_failure":"true"}
17:59:46 WARNING [DRY: Commandline Execution] Skipping execution. Condition: false
17:59:46 INFO Rehearsal OK! Performing!
17:59:46 INFO [Kingpin] Preparing actors from {"actor":"misc.Sleep","condition":"false","desc":"Commandline Execution","options":{"sleep":"0.1"},"warn_on_failure":"true"}
17:59:46 INFO
17:59:46 WARNING Lights, camera ... action!
17:59:46 INFO
17:59:46 WARNING [Commandline Execution] Skipping execution. Condition: false

 Copyright 2015, Nextdoor.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Kingpin 0.4.0 documentation

Actors

Definition: a participant in an action or process.

	Amazon Web Services
	Documentation

	CloudFormation

	Elastic Load Balancing (ELB)

	Identity and Access Management (IAM)

	Simple Storage Service (S3)

	Simple Queue Service (SQS)

	Grouping Actors
	Async

	Sync

	Hipchat
	Message

	Topic

	Librato
	Annotation

	Miscellaneous
	Macro

	Sleep

	GenericHTTP

	PackageCloud
	Documentation

	Delete

	DeleteByDate

	WaitForPackage

	Pingdom
	Pause

	Unpause

	RightScale
	Documentation

	Deployment

	Alert Specs

	Server Arrays

	Multi Cloud Images

	Rollbar
	Deploy

	Slack
	Message

 Copyright 2015, Nextdoor.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Kingpin 0.4.0 documentation

 	Actors

Amazon Web Services

Documentation

kingpin.actors.aws.base

The AWS Actors allow you to interact with the resources (such as SQS and ELB)
inside your Amazon AWS account. These actors all support dry runs properly, but
each actor has its own caveats with dry=True. Please read the instructions
below for using each actor.

Required Environment Variables

Note, these can be skipped only if you have a .aws/credentials file in place.

	AWS_ACCESS_KEY_ID:

		Your AWS access key

	AWS_SECRET_ACCESS_KEY:

		Your AWS secret

	
exception kingpin.actors.aws.base.InvalidPolicy[source]

	Raised when Amazon indicates that policy JSON is invalid.

CloudFormation

kingpin.actors.aws.cloudformation

	
class kingpin.actors.aws.cloudformation.Create(*args, **kwargs)[source]

	Creates a CloudFormation stack.

Creates a CloudFormation stack from scratch and waits until the stack is
fully built before exiting the actor.

Options

	Capabilities:	A list of CF capabilities to add to the stack.

	Disable_rollback:

		Set to True to disable rollback of the stack if creation failed.

	Name:	The name of the queue to create

	Parameters:	A dictionary of key/value pairs used to fill in the parameters for the
CloudFormation template.

	Region:	AWS region (or zone) string, like ‘us-west-2’

	Template:	String of path to CloudFormation template. Can either be in the form of a
local file path (ie, /my_template.json) or a URI (ie
https://my_site.com/cf.json).

	Timeout_in_minutes:

		The amount of time that can pass before the stack status becomes
CREATE_FAILED.

Examples

{ "desc": "Create production backend stack",
 "actor": "aws.cloudformation.Create",
 "options": {
 "capabilities": ["CAPABILITY_IAM"],
 "disable_rollback": true,
 "name": "%CF_NAME%",
 "parameters": {
 "test_param": "%TEST_PARAM_NAME%",
 },
 "region": "us-west-1",
 "template": "/examples/cloudformation_test.json",
 "timeout_in_minutes": 45,
 }
}

Dry Mode

Validates the template, verifies that an existing stack with that name does
not exist. Does not create the stack.

	
class kingpin.actors.aws.cloudformation.Delete(*args, **kwargs)[source]

	Deletes a CloudFormation stack

Options

	Name:	The name of the queue to create

	Region:	AWS region (or zone) string, like ‘us-west-2’

Examples

{ "desc": "Delete production backend stack",
 "actor": "aws.cloudformation.Create",
 "options" {
 "region": "us-west-1",
 "name": "%CF_NAME%",
 }
}

Dry Mode

Validates that the CF stack exists, but does not delete it.

Elastic Load Balancing (ELB)

kingpin.actors.aws.elb

	
class kingpin.actors.aws.elb.WaitUntilHealthy(*args, **kwargs)[source]

	Wait indefinitely until a specified ELB is considered “healthy”.

This actor will loop infinitely until a healthy threshold of the ELB is
met. The threshold can be reached when the count as specified in the
options is less than or equal to the number of InService instances in the
ELB.

Another situation is for count to be a string specifying a percentage
(see examples). In this case the percent of InService instances has to be
greater than the count percentage.

Options

	Name:	The name of the ELB to operate on

	Count:	Number, or percentage of InService instance to consider this ELB healthy

	Region:	AWS region (or zone) name, such as us-east-1 or us-west-2

Examples

{ "actor": "aws.elb.WaitUntilHealthy",
 "desc": "Wait until production-frontend has 16 hosts",
 "options": {
 "name": "production-frontend",
 "count": 16,
 "region": "us-west-2"
 }
}

{ "actor": "aws.elb.WaitUntilHealthy",
 "desc": "Wait until production-frontend has 85% of hosts in-service",
 "options": {
 "name": "production-frontend",
 "count": "85%",
 "region": "us-west-2"
 }
}

Dry Mode

This actor performs the finding of the ELB as well as calculating its
health at all times. The only difference in dry mode is that it will not
re-count the instances if the ELB is not healthy. A log message will be
printed indicating that the run is dry, and the actor will exit with
success.

	
class kingpin.actors.aws.elb.SetCert(*args, **kwargs)[source]

	Find a server cert in IAM and use it for a specified ELB.

Options

	Region:	(str) AWS region (or zone) name, like us-west-2

	Name:	(str) Name of the ELB

	Cert_name:	(str) Unique IAM certificate name, or ARN

	Port:	(int) Port associated with the cert.
(default: 443)

Example

{ "actor": "aws.elb.SetCert",
 "desc": "Run SetCert",
 "options": {
 "cert_name": "new-cert",
 "name": "some-elb",
 "region": "us-west-2"
 }
}

Dry run

Will check that ELB and Cert names are existent, and will also check that
the credentials provided for AWS have access to the new cert for ssl.

	
class kingpin.actors.aws.elb.RegisterInstance(*args, **kwargs)[source]

	Add an EC2 instance to a load balancer.

Options

	Elb:	(str) Name of the ELB

	Instances:	(str, list) Instance id, or list of ids. Default “self” id.

	Region:	(str) AWS region (or zone) name, like us-west-2

	Enable_zones:	(bool) add all available AZ to the elb. Default: True

Example

{ "actor": "aws.elb.RegisterInstance",
 "desc": "Run RegisterInstance",
 "options": {
 "elb": "prod-loadbalancer",
 "instances": "i-123456",
 "region": "us-east-1",
 }
}

Dry run

Will find the specified ELB, but not take any actions regarding instances.

	
class kingpin.actors.aws.elb.DeregisterInstance(*args, **kwargs)[source]

	Remove EC2 instance(s) from an ELB.

Options

	Elb:	(str) Name of the ELB. Optionally this may also be a *.

	Instances:	(str, list) Instance id, or list of ids

	Region:	(str) AWS region (or zone) name, like us-west-2

	Wait_on_draining:

		(bool) Whether or not to wait for connection draining

Example

{ "actor": "aws.elb.DeregisterInstance",
 "desc": "Run DeregisterInstance",
 "options": {
 "elb": "my-webserver-elb",
 "instances": "i-abcdeft",
 "region": "us-west-2"
 }
}

Extremely simple way to remove the local instance running this code from
all ELBs its been joined to:

{ "actor": "aws.elb.DeregisterInstance",
 "desc": "Run DeregisterInstance",
 "options": {
 "elb": "*",
 "region": "us-west-2"
 }
}

Dry run

Will find the ELB but not take any actions regarding the instances.

Identity and Access Management (IAM)

kingpin.actors.aws.iam

	
class kingpin.actors.aws.iam.User(*args, **kwargs)[source]

	Manages an IAM User.

This actor manages the state of an Amazon IAM User.

Currently we can:

	Ensure is present or absent

	Manage the inline policies for the user

	Manage the groups the user is in

Options

	Name:	(str) Name of the User profile to manage

	State:	(str) Present or Absent. Default: “present”

	Groups:	(str,array) A list of groups for the user to be a member of.
Default: None

	Inline_policies:

		(str,array) A list of strings that point to JSON files to use as inline
policies.
Default: None

Example

{ "actor": "aws.iam.User",
 "desc": "Ensure that Bob exists",
 "options": {
 "name": "bob",
 "state": "present",
 "groups": "my-test-group",
 "inline_policies": [
 "read-all-s3.json",
 "create-other-stuff.json"
]
 }
}

Dry run

Will let you know if the user exists or not, and what changes it would make
to the users policy and settings. Will also parse the inline policies
supplied, make sure any tokens in the files are replaced, and that the
files are valid JSON.

	
class kingpin.actors.aws.iam.Group(*args, **kwargs)[source]

	Manages an IAM Group.

This actor manages the state of an Amazon IAM Group.

Currently we can:

	Ensure is present or absent

	Manage the inline policies for the group

	Purge (or not) all group members and delete the group

Options

	Name:	(str) Name of the Group profile to manage

	Force:	(bool) Forcefully delete the group (explicitly purging all group
memberships).
Default: false

	State:	(str) Present or Absent. Default: “present”

	Inline_policies:

		(str,array) A list of strings that point to JSON files to use as inline
policies. You can also pass in a single inline policy as a string.
Default: None

Example

{ "actor": "aws.iam.Group",
 "desc": "Ensure that devtools exists",
 "options": {
 "name": "devtools",
 "state": "present",
 "inline_policies": [
 "read-all-s3.json",
 "create-other-stuff.json"
]
 }
}

Dry run

Will let you know if the group exists or not, and what changes it would
make to the groups policy and settings. Will also parse the inline policies
supplied, make sure any tokens in the files are replaced, and that the
files are valid JSON.

	
class kingpin.actors.aws.iam.Role(*args, **kwargs)[source]

	Manages an IAM Role.

This actor manages the state of an Amazon IAM Role.

Currently we can:

	Ensure is present or absent

	Manage the inline policies for the role

	Manage the Assume Role Policy Document

Options

	Name:	(str) Name of the Role to manage

	State:	(str) Present or Absent. Default: “present”

	Inline_policies:

		(str,array) A list of strings that point to JSON files to use as inline
policies. You can also pass in a single inline policy as a string.
Default: None

	Assume_role_policy_document:

		(str) A string with an Amazon IAM Assume Role policy. Not providing this
causes Kingpin to ignore the value, and Amazon defaults the role to an
‘EC2’ style rule. Supplying the document will cause Kingpin to ensure the
assume role policy is correct.
Default: None

Example

{ "actor": "aws.iam.Role",
 "desc": "Ensure that myapp exists",
 "options": {
 "name": "myapp",
 "state": "present",
 "inline_policies": [
 "read-all-s3.json",
 "create-other-stuff.json"
]
 }
}

Dry run

Will let you know if the group exists or not, and what changes it would
make to the groups policy and settings. Will also parse the inline policies
supplied, make sure any tokens in the files are replaced, and that the
files are valid JSON.

	
class kingpin.actors.aws.iam.InstanceProfile(*args, **kwargs)[source]

	Manages an IAM Instance Profile.

This actor manages the state of an Amazon IAM Instance Profile.

Currently we can:

	Ensure is present or absent

	Assign an IAM Role to the Instance Profile

Options

	Name:	(str) Name of the Role to manage

	State:	(str) Present or Absent. Default: “present”

	Role:	(str) Name of an IAM Role to assign to the Instance Profile.
Default: None

Example

{ "actor": "aws.iam.InstanceProfile",
 "desc": "Ensure that my-ecs-servers exists",
 "options": {
 "name": "my-ecs-servers",
 "state": "present",
 "role": "some-iam-role",
 }
}

Dry run

Will let you know if the profile exists or not, and what changes it would
make to the profile.

	
class kingpin.actors.aws.iam.UploadCert(*args, **kwargs)[source]

	Uploads a new SSL Cert to AWS IAM.

Options

	Private_key_path:

		(str) Path to the private key.

	Path:	(str) The AWS “path” for the server certificate. Default: “/”

	Public_key_path:

		(str) Path to the public key certificate.

	Name:	(str) The name for the server certificate.

	Cert_chain_path:

		(str) Path to the certificate chain. Optional.

Example

{ "actor": "aws.iam.UploadCert",
 "desc": "Upload a new cert",
 "options": {
 "name": "new-cert",
 "private_key_path": "/cert.key",
 "public_key_path": "/cert.pem",
 "cert_chain_path": "/cert-chain.pem"
 }
}

Dry run

Checks that the passed file paths are valid. In the future will also
validate that the files are of correct format and content.

	
class kingpin.actors.aws.iam.DeleteCert(*args, **kwargs)[source]

	Delete an existing SSL Cert in AWS IAM.

Options

	Name:	(str) The name for the server certificate.

Example

{ "actor": "aws.iam.DeleteCert",
 "desc": "Run DeleteCert",
 "options": {
 "name": "fill-in"
 }
}

Dry run

Will find the cert by name or raise an exception if it’s not found.

Simple Storage Service (S3)

kingpin.actors.aws.s3

	
class kingpin.actors.aws.s3.LoggingConfig[source]

	Provides JSON-Schema based validation of the supplied logging config.

The S3 LoggingConfig format should look like this:

{ "target": "s3_bucket_name_here",
 "prefix": "an_optional_prefix_here" }

If you supply an empty target, then we will explicitly remove the logging
configuration from the bucket. Example:

{ "target": "" }

	
class kingpin.actors.aws.s3.LifecycleConfig[source]

	Provides JSON-Schema based validation of the supplied Lifecycle config.

The S3 Lifecycle system allows for many unique configurations. Each
configuration object defined in this schema will be turned into a
boto.s3.lifecycle.Rule [http://boto.cloudhackers.com/en/latest/ref/s3.html#boto.s3.lifecycle.Rule] object. All of the rules together will
be turned into a boto.s3.lifecycle.Lifecycle [http://boto.cloudhackers.com/en/latest/ref/s3.html#boto.s3.lifecycle.Lifecycle] object.

[
 { "id": "unique_rule_identifier",
 "prefix": "/some_path",
 "status": "Enabled",
 "expiration": 365,
 "transition": {
 "days": 90,
 "date": "2016-05-19T20:04:17+00:00",
 "storage_class": "GLACIER",
 }
 }
]

	
class kingpin.actors.aws.s3.Bucket(*args, **kwargs)[source]

	Manage the state of a single S3 Bucket.

The actor has the following functionality:

	Ensure that an S3 bucket is present or absent.

	Manage the bucket policy.

	Manage the bucket Lifecycle configurations.

	Enable or Suspend Bucket Versioning.
Note: It is impossible to actually _disable_ bucket versioning – once
it is enabled, you can only suspend it, or re-enable it.

Note about Buckets with Files

Amazon requires that an S3 bucket be empty in order to delete it. Although
we could recursively search for all files in the bucket and then delete
them, this is a wildly dangerous thing to do inside the confines of this
actor. Instead, we raise an exception and alert the you to the fact that
they need to delete the files themselves.

Options

	Name:	The name of the bucket to operate on

	State:	(str) Present or Absent. Default: “present”

	Lifecycle:	(LifecycleConfig, None)

A list of individual Lifecycle configurations. Each dictionary includes
keys for the id [https://docs.python.org/2.7/library/functions.html#id], prefix and status as required parameters.
Optionally you can supply an expiration and/or transition dictionary.

If an empty list is supplied, or the list in any way does not match what
is currently configured in Amazon, the appropriate changes will be made.

	Logging:	(LoggingConfig, None)

If a dictionary is supplied ({'target': 'logging_bucket', 'prefix':
'/mylogs'}), then we will configure bucket logging to the supplied
bucket and prefix. If prefix is missing then no prefix will be used.

If target is supplied as an empty string (''), then we will disable
logging on the bucket. If None [https://docs.python.org/2.7/library/constants.html#None] is supplied, we will not manage logging
either way.

	Policy:	(str, None) A JSON file with the bucket policy. Passing in a blank string
will cause any policy to be deleted. Passing in None (or not passing it
in at all) will cause Kingpin to ignore the policy for the bucket
entirely. Default: None

	Region:	AWS region (or zone) name, such as us-east-1 or us-west-2

	Versioning:	(bool, None): Whether or not to enable Versioning on the bucket. If
“None”, then we don’t manage versioning either way. Default: None

Examples

{ "actor": "aws.s3.Bucket",
 "options": {
 "name": "kingpin-integration-testing",
 "region": "us-west-2",
 "policy": "./examples/aws.s3/amazon_put.json",
 "lifecycle": {
 "id": "main",
 "prefix": "/",
 "status": "Enabled",
 "expiration": 30,
 },
 "logging": {
 "target": "logs.myco.com",
 "prefix": "/kingpin-integratin-testing"
 },
 "versioning": true,
 }
}

Dry Mode

Finds the bucket if it exists (or tells you it would create it). Describes
each potential change it would make to the bucket depending on the
configuration of the live bucket, and the options that were passed into the
actor.

Will gracefully fail and alert you if there are files in the bucket and you
are trying to delete it.

Simple Queue Service (SQS)

kingpin.actors.aws.sqs

	
class kingpin.actors.aws.sqs.Create(*args, **kwargs)[source]

	Creates a new SQS queue with the specified name

Options

	Name:	(str) The name of the queue to create

	Region:	(str) AWS region (or zone) string, like ‘us-west-2’

Examples

{ "actor": "aws.sqs.Create",
 "desc": "Create queue named async-tasks",
 "options": {
 "name": "async-tasks",
 "region": "us-east-1",
 }
}

Dry Mode

Will not create any queue, or even contact SQS. Will create a mock.Mock
object and exit with success.

	
class kingpin.actors.aws.sqs.Delete(*args, **kwargs)[source]

	Deletes the SQS queues

Note: even if it`s not empty

Options

	Name:	(str) The name of the queue to destroy

	Region:	(str) AWS region (or zone) string, like ‘us-west-2’

	Idempotent:	(bool) Will not raise errors if no matching queues are found.
(default: False)

Examples

{ "actor": "aws.sqs.Delete",
 "desc": "Delete queue async-tasks",
 "options": {
 "name": "async-tasks",
 "region": "us-east-1"
 }
}

{ "actor": "aws.sqs.Delete",
 "desc": "Delete queues with 1234 in the name",
 "options": {
 "name": "1234",
 "region": "us-east-1"
 }
}

Dry Mode

Will find the specified queue, but will have a noop regarding its deletion.
Dry mode will fail if no queues are found, and idempotent flag is set to
False.

	
class kingpin.actors.aws.sqs.WaitUntilEmpty(*args, **kwargs)[source]

	Wait indefinitely until for SQS queues to become empty

This actor will loop infinitely as long as the count of messages in at
least one queue is greater than zero. SQS does not guarantee exact count,
so this can return a stale value if the number of messages in the queue
changes rapidly.

Options

	Name:	(str) The name or regex pattern of the queues to operate on

	Region:	(str) AWS region (or zone) string, like ‘us-west-2’

	Required:	(bool) Fail if no matching queues are found.
(default: False)

Examples

{ "actor": "aws.sqs.WaitUntilEmpty",
 "desc": "Wait until release-0025a* queues are empty",
 "options": {
 "name": "release-0025a",
 "region": "us-east-1",
 "required": true
 }
}

Dry Mode

This actor performs the finding of the queue, but will pretend that the
count is 0 and return success. Will fail even in dry mode if required
option is set to True and no queues with the name pattern are found.

 Copyright 2015, Nextdoor.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Kingpin 0.4.0 documentation

 	Actors

Grouping Actors

Async

	
class kingpin.actors.group.Async(*args, **kwargs)[source]

	Execute several kingpin.actors.base.BaseActor objects asynchronously.

Groups together a series of Actors and executes them asynchronously -
waiting until all of them finish before returning.

Options

	Concurrency:	Max number of concurrent executions. This will fire off N executions
in parallel, and continue with the remained as soon as the first
execution is done. This is faster than creating N Sync executions.

	Acts:	An array of individual Actor definitions.

	Contexts:	This variable can be one of two formats:

	A list of dictionaries with contextual tokens to pass into the actors
at instantiation time. If the list has more than one element, then
every actor defined in acts will be instantiated once for each item
in the contexts list.

	A dictionary of file and tokens. The file should be a relative
path with data formatted same as stated above. The tokens need to be
the same format as a Macro actor: a dictionary passing token data to be
used.

Timeouts

Timeouts are disabled specifically in this actor. The sub-actors can still
raise their own kingpin.actors.exceptions.ActorTimedOut exceptions, but
since the group actors run an arbitrary number of sub actors, we have
chosen to not have this actor specifically raise its own
kingpin.actors.exceptions.ActorTimedOut exception unless the user sets
the timeout setting.

Examples

Clone two arrays quickly.

{ "desc": "Clone two arrays",
 "actor": "group.Async",
 "options": {
 "contexts": [
 { "ARRAY": "NewArray1" },
 { "ARRAY": "NewArray2" }
],
 "acts": [
 { "desc": "do something",
 "actor": "server_array.Clone",
 "options": {
 "source": "template",
 "dest": "{ARRAY}",
 }
 }
]
 }
}

Dry Mode

Passes on the Dry mode setting to the sub-actors that are called.

Failure

In the event that one or more acts fail in this group, the entire group
acts will return a failure to Kingpin. Because multiple actors are
executing all at the same time, the all of these actors will be allowed to
finish before the failure is returned.

Sync

	
class kingpin.actors.group.Sync(*args, **kwargs)[source]

	Execute a series of kingpin.actors.base.BaseActor synchronously.

Groups together a series of Actors and executes them synchronously
in the order that they were defined.

Options

	Acts:	An array of individual Actor definitions.

	Contexts:	This variable can be one of two formats:

	A list of dictionaries with contextual tokens to pass into the actors
at instantiation time. If the list has more than one element, then
every actor defined in acts will be instantiated once for each item
in the contexts list.

	A string that points to a file with a list of contexts, just like the
above dictionary.

	(_Deprecation warning, this is going away in v0.4.0. Use the ‘str’
method above!_) A dictionary of file and tokens. The file
should be a relative path with data formatted same as stated above. The
tokens need to be the same format as a Macro actor: a dictionary
passing token data to be used.

Timeouts

Timeouts are disabled specifically in this actor. The sub-actors can still
raise their own kingpin.actors.exceptions.ActorTimedOut exceptions, but
since the group actors run an arbitrary number of sub actors, we have
chosen to not have this actor specifically raise its own
kingpin.actors.exceptions.ActorTimedOut exception unless the user sets
the timeout setting.

Examples

Creates two arrays ... but sleeps 60 seconds between the two, then
does not sleep at all after the last one:

{ "desc": "Clone, then sleep ... then clone, then sleep shorter...",
 "actor": "group.Sync",
 "options": {
 "contexts": [
 { "ARRAY": "First", "SLEEP": "60", },
 { "ARRAY": "Second", "SLEEP": "0", }
],
 "acts": [
 { "desc": "do something",
 "actor": "server_array.Clone",
 "options": {
 "source": "template",
 "dest": "{ARRAY}"
 }
 },
 { "desc": "sleep",
 "actor": "misc.Sleep",
 "options": {
 "sleep": "{SLEEP}",
 }
 }
]
 }
}

Alternatively if no contexts are needed you can use the array [https://docs.python.org/2.7/library/array.html#module-array] syntax.

[
 {
 "actor": "server_array.Clone",
 "options": {
 "source": "template",
 "dest": "%ARRAY%"
 }
 },
 {
 "actor": "misc.Sleep",
 "options": { "sleep": 30 }
 }
]

Dry Mode

Passes on the Dry mode setting to the acts that are called. Does not
stop execution when one of the acts fails. Instead Group actor will finish
all acts with warnings, and raise an error at the end of execution.

This provides the user with an insight to all the errors that are possible
to encounter, rather than abort and quit on the first one.

Failure

In the event that an act fails, this actor will return the failure
immediately. Because the acts are executed in-order of definition, the
failure will prevent any further acts from executing.

The behavior is different in the dry run (read above.)

 Copyright 2015, Nextdoor.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Kingpin 0.4.0 documentation

 	Actors

Hipchat

Message

	
class kingpin.actors.hipchat.Message(*args, **kwargs)[source]

	Sends a message to a room in HipChat.

Options

	Room:	(str) The string-name (or ID) of the room to send a message to

	Message:	(str) Message to send

Examples

{ "actor": "hipchat.Message",
 "desc": "Send a message!",
 "options": {
 "room": "Operations",
 "message": "Beginning Deploy: v1.2"
 }
}

Dry Mode

Fully supported – does not actually send messages to a room, but validates
that the API credentials would have access to send the message using the
HipChat auth_test optional API argument.

Topic

	
class kingpin.actors.hipchat.Topic(*args, **kwargs)[source]

	Sets a HipChat room topic.

Options

	room - The string-name (or ID) of the room to set the topic of

	topic - String of the topic to send

Examples

{ "actor": "hipchat.Topic",
 "desc": "set the room topic",
 "options": {
 "room": "Operations",
 "topic": "Latest Deployment: v1.2"
 }
}

Dry Mode

Fully supported – does not actually set a room topic, but validates
that the API credentials would have access to set the topic of the room
requested.

 Copyright 2015, Nextdoor.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Kingpin 0.4.0 documentation

 	Actors

Librato

Annotation

	
class kingpin.actors.librato.Annotation(*args, **kwargs)[source]

	Librato Annotation Actor

Posts an Annotation to Librato.

Options

	Title:	The title of the annotation

	Description:	The description of the annotation

	Name:	Name of the metric to annotate

Examples

{ "actor": "librato.Annotation",
 "desc": "Mark our deployment",
 "options": {
 "title": "Deploy",
 "description": "Version: 0001a",
 "name": "production_releases"
 }
}

Dry Mode

Currently does not actually do anything, just logs dry mode.

 Copyright 2015, Nextdoor.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Kingpin 0.4.0 documentation

 	Actors

Miscellaneous

Macro

	
class kingpin.actors.misc.Macro(*args, **kwargs)[source]

	Parses a kingpin script, instantiates and executes it.

Parse JSON/YAML

Kingpin JSON/YAML has 2 passes at its validity. Script syntax must be
valid, with the exception of a few useful deviations allowed by demjson [http://deron.meranda.us/python/demjson/] parser. Main
one being the permission of inline comments via /* this */ syntax.

The second pass is validating the Schema. The script will be validated
for schema-conformity as one of the first things that happens at load-time
when the app starts up. If it fails, you will be notified immediately.

Lastly after the JSON/YAML is established to be valid, all the tokens are
replaced with their specified value. Any key/value pair passed in the
tokens option will be available inside of the JSON file as %KEY%
and replaced with the value at this time.

In a situation where nested Macro executions are invoked the tokens do
not propagate from outter macro into the inner. This allows to reuse token
names, but forces the user to specify every token needed. Similarly, if
environment variables are used for token replacement in the main file,
these tokens are not available in the subsequent macros.

Pre-Instantiation

In an effort to prevent mid-run errors, we pre-instantiate all Actor
objects all at once before we ever begin executing code. This ensures that
major typos or misconfigurations in the JSON/YAML will be caught early on.

Execution

misc.Macro actor simply calls the execute() method of the most-outter
actor; be it a single action, or a group actor.

Options

	Macro:	String of local path to a JSON/YAML script.

	Tokens:	Dictionary to search/replace within the file.

Examples

{ "desc": "Stage 1",
 "actor": "misc.Macro",
 "options": {
 "macro": "deployment/stage-1.json",
 "tokens": {
 "TIMEOUT": 360,
 "RELEASE": "%RELEASE%"
 }
 }
}

Dry Mode

Fully supported – instantiates the actor inside of JSON with dry=True. The
behavior of the consecutive actor is unique to each; read their description
for more information on dry mode.

Sleep

	
class kingpin.actors.misc.Sleep(desc=None, options={}, dry=False, warn_on_failure=False, condition=True, init_context={}, init_tokens={}, timeout=None)[source]

	Sleeps for an arbitrary number of seconds.

Options

	Sleep:	Integer of seconds to sleep.

Examples

{ "actor": "misc.Sleep",
 "desc": "Sleep for 60 seconds",
 "options": {
 "sleep": 60
 }
}

Dry Mode

Fully supported – does not actually sleep, just pretends to.

GenericHTTP

	
class kingpin.actors.misc.GenericHTTP(desc=None, options={}, dry=False, warn_on_failure=False, condition=True, init_context={}, init_tokens={}, timeout=None)[source]

	A very simple actor that allows GET/POST methods over HTTP.

Does a GET or a POST to a specified URL.

Options

	Url:	Destination URL

	Data:	Optional POST data as a dict [https://docs.python.org/2.7/library/stdtypes.html#dict]. Will convert into key=value&key2=value2..
Exclusive of data-json option.

	Data-json:	Optional POST data as a dict [https://docs.python.org/2.7/library/stdtypes.html#dict]. Will stringify and pass as JSON.
Exclusive of data option.

	Username:	Optional for HTTPAuth.

	Password:	Optional for HTTPAuth.

Examples

{ "actor": "misc.GenericHTTP",
 "desc": "Make a simple web call",
 "options": {
 "url": "http://example.com/rest/api/v1?id=123&action=doit",
 "username": "secret",
 "password": "%SECRET_PASSWORD%"
 }
}

Dry Mode

Will not do anything in dry mode except print a log statement.

 Copyright 2015, Nextdoor.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Kingpin 0.4.0 documentation

 	Actors

PackageCloud

Documentation

kingpin.actors.packagecloud

The packagecloud actor allows you to perform maintenance operations on
repositories hosted by packagecloud.io using their API:

https://packagecloud.io/docs/api

Required Environment Variables

	PACKAGECLOUD_ACCOUNT:

		packagecloud account name, i.e. https://packagecloud.io/PACKAGECLOUD_ACCOUNT

	PACKAGECLOUD_TOKEN:

		packagecloud API Token

Delete

	
class kingpin.actors.packagecloud.Delete(*args, **kwargs)[source]

	Deletes packages from a PackageCloud repo.

Searches for packages that match the packages_to_delete regex pattern and
deletes them. If number_to_keep is set, we always at least this number
of versions of the given package intact in the repo. Also if
number_to_keep is set, the older versions of a package (based on upload
time) packages will be deleted first effectively leaving newer packages
in the repo.

Options

	Number_to_keep:	Keep at least this number of each package
(defaults to 0)

	Packages_to_delete:

		Regex of packages to delete, e.g. pkg1|pkg2

	Repo:	Which packagecloud repo to delete from

Examples

{ "desc": "packagecloud Delete example",
 "actor": "packagecloud.Delete",
 "options": {
 "number_to_keep": 10,
 "packages_to_delete": "deleteme",
 "repo": "test"
 }
}

DeleteByDate

	
class kingpin.actors.packagecloud.DeleteByDate(*args, **kwargs)[source]

	Deletes packages from a PackageCloud repo older than X.

Adds additional functionality to the Delete class with a older_than
option. Only packages older than that number of seconds will be deleted.

Options

	Number_to_keep:	Keep at least this number of each package
(defaults to 0)

	Older_than:	Delete packages created before this number of seconds

	Packages_to_delete:

		Regex of packages to delete, e.g. pkg1|pkg2

	Repo:	Which packagecloud repo to delete from

Examples

{ "desc": "packagecloud DeleteByDate example",
 "actor": "packagecloud.DeleteByDate",
 "options": {
 "number_to_keep": 10,
 "older_than": 600,
 "packages_to_delete": "deleteme",
 "repo": "test"
 }
}

WaitForPackage

	
class kingpin.actors.packagecloud.WaitForPackage(*args, **kwargs)[source]

	Searches for a package that matches name and version until found or
a timeout occurs.

Options

	Name:	Name of the package to search for as a regex

	Version:	Version of the package to search for as a regex

	Repo:	Which packagecloud repo to delete from

	Sleep:	Number of seconds to sleep for between each search

Examples

{ "desc": "packagecloud WaitForPackage example",
 "actor": "packagecloud.WaitForPackage",
 "options": {
 "name": "findme",
 "version": "0.1",
 "repo": "test",
 "sleep": 10,
 }
}

 Copyright 2015, Nextdoor.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Kingpin 0.4.0 documentation

 	Actors

Pingdom

Pause

	
class kingpin.actors.pingdom.Pause(*args, **kwargs)[source]

	Start Pingdom Maintenance.

Pause a particular “check” on Pingdom.

Options

	Name:	(Str) Name of the check

Example

{ "actor": "pingdom.Pause",
 "desc": "Run Pause",
 "options": {
 "name": "fill-in"
 }
}

Dry run

Will assert that the check name exists, but not take any action on it.

Unpause

	
class kingpin.actors.pingdom.Unpause(*args, **kwargs)[source]

	Stop Pingdom Maintenance.

Unpause a particular “check” on Pingdom.

Options

	Name:	(Str) Name of the check

Example

{ "actor": "pingdom.Unpause",
 "desc": "Run unpause",
 "options": {
 "name": "fill-in"
 }
}

Dry run

Will assert that the check name exists, but not take any action on it.

 Copyright 2015, Nextdoor.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Kingpin 0.4.0 documentation

 	Actors

RightScale

Documentation

kingpin.actors.rightscale.base

The RightScale Actors allow you to interact with resources inside your
Rightscale account. These actors all support dry runs properly, but each
actor has its own caveats with dry=True. Please read the instructions
below for using each actor.

Required Environment Variables

	RIGHTSCALE_TOKEN:

		RightScale API Refresh Token
(from the Account Settings/API Credentials page)

	RIGHTSCALE_ENDPOINT:

		Your account-specific API Endpoint
(defaults to https://my.rightscale.com)

	
exception kingpin.actors.rightscale.base.ArrayNotFound[source]

	Raised when a ServerArray could not be found.

	
exception kingpin.actors.rightscale.base.ArrayAlreadyExists[source]

	Raised when a ServerArray already exists by a given name.

Deployment

kingpin.actors.rightscale.deployment

	
class kingpin.actors.rightscale.deployment.Create(*args, **kwargs)[source]

	Creates a RightScale deployment.

Options match the documentation in RightScale:
http://reference.rightscale.com/api1.5/resources/ResourceDeployments.html

Options

	Name:	The name of the deployment to be created.

	Description:	The description of the deployment to be created.
(optional)

	Server_tag_scope:

		The routing scope for tags for servers in the deployment.
Can be ‘deployment’ or ‘account’
(optional, default: deployment)

	
class kingpin.actors.rightscale.deployment.Destroy(*args, **kwargs)[source]

	Deletes a RightScale deployment.

Options match the documentation in RightScale:
http://reference.rightscale.com/api1.5/resources/ResourceDeployments.html

Options

	Name:	The name of the deployment to be deleted.

Alert Specs

kingpin.actors.rightscale.alerts

	
class kingpin.actors.rightscale.alerts.Create(*args, **kwargs)[source]

	Create a RightScale Alert Spec

Options match the documentation in RightScale:
http://reference.rightscale.com/api1.5/resources/ResourceAlertSpecs.html#create

Options

	Array:	The name of the Server or ServerArray to create the AlertSpec on.

	Strict_array:	Whether or not to fail if the Server/ServerArray does not exist.
(default: False)

	Condition:	The condition (operator) in the condition sentence.
(>, >=, <, <=, ==, !=)

	Description:	The description of the AlertSpec.
(optional)

	Duration:	The duration in minutes of the condition sentence.
(^d+$)

	Escalation_name:

		Escalate to the named alert escalation when the alert is triggered.
(optional)

	File:	The RRD path/file_name of the condition sentence.

	Name:	The name of the AlertSpec.

	Threshold:	The threshold of the condition sentence.

	Variable:	The RRD variable of the condition sentence

	Vote_tag:	Should correspond to a vote tag on a ServerArray if vote to grow or
shrink.

	Vote_type:	Vote to grow or shrink a ServerArray when the alert is triggered. Must
either escalate or vote.
(grow or shrink)

Examples

Create a high network activity alert on my-array:

{ "desc": "Create high network rx alert",
 "actor": "rightscale.alerts.Create",
 "options": {
 "array": "my-array",
 "strict_array": true,
 "condition": ">",
 "description": "Alert if amount of network data received is high",
 "duration": 180,
 "escalation_name": "Email Engineering",
 "file": "interface/if_octets-eth0",
 "name": "high network rx activity",
 "threshold": "50000000",
 "variable": "rx"
 }
}

Dry Mode

In Dry mode this actor does validate that the array array exists.
If it does not, a kingpin.actors.rightscale.api.ServerArrayException is
thrown. Once that has been validated, the dry mode execution simply logs
the Alert Spec that it would have created.

Example dry output:

TODO: Fill this in

	
class kingpin.actors.rightscale.alerts.Destroy(*args, **kwargs)[source]

	Destroy existing RightScale Alert Specs

This actor searches RightScale for any Alert Specs that match the name
and array that you supplied, then deletes all of them. RightScale lets
you have multiple alert specs with the same name, so if this actor finds
multiple specs, it will delete them all.

Options

	Array:	The name of the Server or ServerArray to delete the AlertSpec from.

	Name:	The name of the AlertSpec.

Examples

Destroy a high network activity alert on my-array:

{ "desc": "Destroy high network rx alert",
 "actor": "rightscale.alerts.Destroy",
 "options": {
 "array": "my-array",
 "name": "high network rx activity",
 }
}

Dry Mode

In Dry mode this actor does validate that the array array exists,
and that the AlertSpec exists on that array so that it can be deleted. A
RecoverableActorFailure error is thrown if it does not exist.

Example dry output:

14:31:49 INFO Rehearsing... Break a leg!
14:31:49 INFO [DRY: Kingpin] Preparing actors from delete.json
14:31:53 INFO [DRY: Destroy high network rx alert] Found
 my-array (/api/server_arrays/329142003) to delete alert spec from
14:31:54 INFO [DRY: Destroy high network rx alert] Would have
 deleted the alert spec "high network rx activity" on my-array

Server Arrays

kingpin.actors.rightscale.server_array

	
class kingpin.actors.rightscale.server_array.Clone(*args, **kwargs)[source]

	Clones a RightScale Server Array.

Clones a ServerArray in RightScale and renames it to the newly supplied
name. By default, this actor is extremely strict about validating that the
source array already exists, and that the dest array does not yet
exist. This behavior can be overridden though if your Kingpin script
creates the source, or destroys an existing dest ServerArray
sometime before this actor executes.

Options

	Source:	The name of the ServerArray to clone

	Strict_source:	Whether or not to fail if the source ServerArray does not exist.
(default: True)

	Dest:	The new name for your cloned ServerArray

	Strict_dest:	Whether or not to fail if the destination ServerArray already exists.
(default: True)

Examples

Clone my-template-array to my-new-array:

{ "desc": "Clone my array",
 "actor": "rightscale.server_array.Clone",
 "options": {
 "source": "my-template-array",
 "dest": "my-new-array"
 }
}

Clone an array that was created sometime earlier in the Kingpin JSON,
and thus does not exist yet during the dry run:

{ "desc": "Clone that array we created earlier",
 "actor": "rightscale.server_array.Clone",
 "options": {
 "source": "my-template-array",
 "strict_source": false,
 "dest": "my-new-array"
 }
}

Clone an array into a destination name that was destroyed sometime
earlier in the Kingpin JSON:

{ "desc": "Clone that array we created earlier",
 "actor": "rightscale.server_array.Clone",
 "options": {
 "source": "my-template-array",
 "dest": "my-new-array",
 "strict_dest": false,
 }
}

Dry Mode

In Dry mode this actor does validate that the source array exists. If
it does not, a kingpin.actors.rightscale.api.ServerArrayException is
thrown. Once that has been validated, the dry mode execution pretends to
copy the array by creating a mocked cloned array resource. This mocked
resource is then operated on during the rest of the execution of the actor,
guaranteeing that no live resources are modified.

Example dry output:

[Copy Test (DRY Mode)] Verifying that array "temp" exists
[Copy Test (DRY Mode)] Verifying that array "new" does not exist
[Copy Test (DRY Mode)] Cloning array "temp"
[Copy Test (DRY Mode)] Renaming array "<mocked clone of temp>" to "new"

	
class kingpin.actors.rightscale.server_array.Update(*args, **kwargs)[source]

	Update ServerArray Settings

Updates an existing ServerArray in RightScale with the supplied parameters.
Can update any parameter that is described in the RightScale API docs here:

Parameters are passed into the actor in the form of a dictionary, and are
then converted into the RightScale format. See below for examples.

Options

	Array:	(str) The name of the ServerArray to update

	Exact:	(bool) whether or not to search for the exact array name.
(default: true)

	Params:	(dict) Dictionary of parameters to update

	Inputs:	(dict) Dictionary of next-instance server arryay inputs to update

Examples

{ "desc": "Update my array",
 "actor": "rightscale.server_array.Update",
 "options": {
 "array": "my-new-array",
 "params": {
 "elasticity_params": {
 "bounds": {
 "min_count": 4
 },
 "schedule": [
 {"day": "Sunday", "max_count": 2,
 "min_count": 1, "time": "07:00" },
 {"day": "Sunday", "max_count": 2,
 "min_count": 2, "time": "09:00" }
]
 },
 "name": "my-really-new-name"
 }
 }
}

{ "desc": "Update my array inputs",
 "actor": "rightscale.server_array.Update",
 "options": {
 "array": "my-new-array",
 "inputs": {
 "ELB_NAME": "text:foobar"
 }
 }
}

Dry Mode

In Dry mode this actor does search for the array, but allows it to be
missing because its highly likely that the array does not exist yet. If the
array does not exist, a mocked array object is created for the rest of the
execution.

During the rest of the execution, the code bypasses making any real changes
and just tells you what changes it would have made.

This means that the dry mode cannot validate that the supplied inputs will
work.

Example dry output:

[Update Test (DRY Mode)] Verifying that array "new" exists
[Update Test (DRY Mode)] Array "new" not found -- creating a mock.
[Update Test (DRY Mode)] Would have updated "<mocked array new>" with
params: {'server_array[name]': 'my-really-new-name',
 'server_array[elasticity_params][bounds][min_count]': '4'}

	
class kingpin.actors.rightscale.server_array.UpdateNextInstance(*args, **kwargs)[source]

	Update the Next Instance parameters for a Server Array

Updates an existing ServerArray in RightScale with the supplied parameters.
Can update any parameter that is described in the RightScale
ResourceInstances [http://reference.rightscale.com/api1.5/resources/ResourceInstances.html#update] docs.

Note about the image_href parameter

If you pass in the string default to the image_href key in your
params dictionary, we will search and find the default image that your
ServerArray’s Multi Cloud Image refers to. This helper is useful if you
update your ServerArrays to use custom AMIs, and then occasionally want to
go back to using a stock AMI. For example, if you boot up your instances
occasionally off a stock AMI, customize the host, and then bake that host
into a custom AMI.

Parameters are passed into the actor in the form of a dictionary, and are
then converted into the RightScale format. See below for examples.

Options

	Array:	(str) The name of the ServerArray to update

	Exact:	(bool) whether or not to search for the exact array name.
(default: true)

	Params:	(dict) Dictionary of parameters to update

Examples

{ "desc": "Update my array",
 "actor": "rightscale.server_array.UpdateNextInstance",
 "options": {
 "array": "my-new-array",
 "params": {
 "associate_public_ip_address": true,
 "image_href": "/image/href/123",
 }
 }
}

{ "desc": "Reset the AMI image to the MCI default",
 "actor": "rightscale.server_array.UpdateNextInstance",
 "options": {
 "array": "my-new-array",
 "params": {
 "image_href": "default",
 }
 }
}

Dry Mode

In Dry mode this actor does search for the array, but allows it to be
missing because its highly likely that the array does not exist yet. If the
array does not exist, a mocked array object is created for the rest of the
execution.

During the rest of the execution, the code bypasses making any real changes
and just tells you what changes it would have made.

This means that the dry mode cannot validate that the supplied params will
work.

Example dry output:

[Update my array (DRY Mode)] Verifying that array "new" exists
[Update my array (DRY Mode)] Array "new" not found -- creating a mock.
[Update my array (DRY Mode)] Would have updated "<mocked array new>"
with params: {'server_array[associate_public_ip_address]': true,
 'server_array[image_href]': '/image/href/'}

	
class kingpin.actors.rightscale.server_array.Terminate(*args, **kwargs)[source]

	Terminate all instances in a ServerArray

Terminates all instances for a ServerArray in RightScale marking the array
disabled.

Options

	Array:	(str) The name of the ServerArray to destroy

	Exact:	(bool) Whether or not to search for the exact array name.
(default: true)

	Strict:	(bool) Whether or not to fail if the ServerArray does not exist.
(default: true)

Examples

 { "desc": "Terminate my array",
 "actor": "rightscale.server_array.Terminate",
 "options": {
 "array": "my-array"
 }
}

{ "desc": "Terminate many arrays",
 "actor": "rightscale.server_array.Terminate",
 "options": {
 "array": "array-prefix",
 "exact": false,
 }
}

Dry Mode

Dry mode still validates that the server array you want to terminate is
actually gone. If you want to bypass this check, then set the
warn_on_failure flag for the actor.

	
class kingpin.actors.rightscale.server_array.Destroy(*args, **kwargs)[source]

	Destroy a ServerArray in RightScale

Destroys a ServerArray in RightScale by first invoking the Terminate actor,
and then deleting the array as soon as all of the running instances have
been terminated.

Options

	Array:	(str) The name of the ServerArray to destroy

	Exact:	(bool) Whether or not to search for the exact array name.
(default: true)

	Strict:	(bool) Whether or not to fail if the ServerArray does not exist.
(default: true)

Examples

{ "desc": "Destroy my array",
 "actor": "rightscale.server_array.Destroy",
 "options": {
 "array": "my-array"
 }
}

{ "desc": "Destroy many arrays",
 "actor": "rightscale.server_array.Destroy",
 "options": {
 "array": "array-prefix",
 "exact": false,
 }
}

Dry Mode

In Dry mode this actor does search for the array [https://docs.python.org/2.7/library/array.html#module-array], but allows it to be
missing because its highly likely that the array does not exist yet. If the
array does not exist, a mocked array object is created for the rest of the
execution.

During the rest of the execution, the code bypasses making any real changes
and just tells you what changes it would have made.

Example dry output:

[Destroy Test (DRY Mode)] Beginning
[Destroy Test (DRY Mode)] Terminating array before destroying it.
[Destroy Test (terminate) (DRY Mode)] Array "my-array" not found --
creating a mock.
[Destroy Test (terminate) (DRY Mode)] Disabling Array "my-array"
[Destroy Test (terminate) (DRY Mode)] Would have terminated all array
"<mocked array my-array>" instances.
[Destroy Test (terminate) (DRY Mode)] Pretending that array <mocked
array my-array> instances are terminated.
[Destroy Test (DRY Mode)] Pretending to destroy array "<mocked array
my-array>"
[Destroy Test (DRY Mode)] Finished successfully. Result: True

	
class kingpin.actors.rightscale.server_array.Launch(*args, **kwargs)[source]

	Launch instances in a ServerArray

Launches instances in an existing ServerArray and waits until that array
has become healthy before returning. Healthy means that the array has at
least the user-specified count or min_count number of instances
running as defined by the array definition in RightScale.

Options

	Array:	(str) The name of the ServerArray to launch

	Count:	(str, int) Optional number of instance to launch. Defaults to min_count
of the array.

	Enable:	(bool) Should the autoscaling of the array be enabled? Settings this to
false, or omitting the parameter will not disable an enabled array.

	Exact:	(bool) Whether or not to search for the exact array name.
(default: true)

Examples

{ "desc": "Enable array and launch it",
 "actor": "rightscale.server_array.Launch",
 "options": {
 "array": "my-array",
 "enable": true
 }
}

{ "desc": "Enable arrays starting with my-array and launch them",
 "actor": "rightscale.server_array.Launch",
 "options": {
 "array": "my-array",
 "enable": true,
 "exact": false
 }
}

{ "desc": "Enable array and launch 1 instance",
 "actor": "rightscale.server_array.Launch",
 "options": {
 "array": "my-array",
 "count": 1
 }
}

Dry Mode

In Dry mode this actor does search for the array, but allows it to be
missing because its highly likely that the array does not exist yet. If the
array does not exist, a mocked array object is created for the rest of the
execution.

During the rest of the execution, the code bypasses making any real changes
and just tells you what changes it would have made.

Example dry output:

[Launch Array Test #0 (DRY Mode)] Verifying that array "my-array" exists
[Launch Array Test #0 (DRY Mode)] Array "my-array" not found -- creating
 a mock.
[Launch Array Test #0 (DRY Mode)] Enabling Array "my-array"
[Launch Array Test #0 (DRY Mode)] Launching Array "my-array" instances
[Launch Array Test #0 (DRY Mode)] Would have launched instances of array
 <MagicMock name='my-array.self.show().soul.__getitem__()'
 id='4420453200'>
[Launch Array Test #0 (DRY Mode)] Pretending that array <MagicMock
 name='my-array.self.show().soul.__getitem__()' id='4420453200'>
 instances are launched.

	
class kingpin.actors.rightscale.server_array.Execute(*args, **kwargs)[source]

	Executes a RightScale script/recipe on a ServerArray

Executes a RightScript or Recipe on a set of hosts in a ServerArray in
RightScale using individual calls to the live running instances. These can
be found in your RightScale account under Design -> RightScript or
Design -> Cookbooks

The RightScale API offers a multi_run_executable method that can be used
to run a single script on all servers in an array – but unfortunately this
API method provides no way to monitor the progress of the individual jobs
on the hosts. Furthermore, the method often executes on recently terminated
or terminating hosts, which throws false-negative error results.

Our actor explicitly retrieves a list of the operational hosts in an
array and kicks off individual execution tasks for every host. It then
tracks the execution of those tasks from start to finish and returns the
results.

Options

	Array:	(str) The name of the ServerArray to operate on

	Script:	(str) The name of the RightScript or Recipe to execute

	Expected_runtime:

		(str, int) Expected number of seconds to execute.
(default: 5)

	Concurrency:	Max number of concurrent executions. This will fire off N executions
in parallel, and continue with the remained as soon as the first
execution is done. This is faster than creating N Sync executions.
Note: When applied to multiple (M) arrays cumulative concurrency
accross all arrays will remain at N. It will not be M x N.

	Inputs:	(dict) Dictionary of Key/Value pairs to use as inputs for the script

	Exact:	(str) Boolean whether or not to search for the exact array name.
(default: true)

Examples

{ "desc":" Execute script on my-array",
 "actor": "rightscale.server_array.Execute",
 "options": {
 "array": "my-array",
 "script": "connect to elb",
 "expected_runtime": 3,
 "inputs": {
 "ELB_NAME": "text:my-elb"
 }
 }
}

Dry Mode

In Dry mode this actor does search for the array [https://docs.python.org/2.7/library/array.html#module-array], but allows it to be
missing because its highly likely that the array does not exist yet. If the
array does not exist, a mocked array object is created for the rest of the
execution.

During the rest of the execution, the code bypasses making any real changes
and just tells you what changes it would have made.

Example dry output:

[Destroy Test (DRY Mode)] Verifying that array "my-array" exists
[Execute Test (DRY Mode)]
 kingpin.actors.rightscale.server_array.Execute Initialized
[Execute Test (DRY Mode)] Beginning execution
[Execute Test (DRY Mode)] Verifying that array "my-array" exists
[Execute Test (DRY Mode)] Would have executed "Connect instance to ELB"
 with inputs "{'inputs[ELB_NAME]': 'text:my-elb'}" on "my-array".
[Execute Test (DRY Mode)] Returning result: True

Multi Cloud Images

kingpin.actors.rightscale.mci

	
class kingpin.actors.rightscale.mci.Create(*args, **kwargs)[source]

	Creates a RightScale Multi Cloud Image.

Options match the documentation in RightScale:
http://reference.rightscale.com/api1.5/resources/ResourceMultiCloudImages.html

Options

	Name:	The name of the MCI to be created.

	Description:	The description of the MCI to be created.
(optional)

	Images:	A list of dicts that each describe a single cloud and the image in that
cloud to launch. See below for details.

Image Definitions

Each cloud image definition is a dictionary that takes a few keys.

	Cloud:	The name of the cloud as found in RightScale. We use the cloud ‘Name’
which can be found in your Settings -> Account Settings -> Clouds ->
insert_cloud_here page. For example AWS us-west-2.

	Image:	The cloud-specific Image UID. For example ami-a1234abc.

	Instance_type:	The default instance type to launch when this AMI is launched. For
example, m1.small.
(optional)

	User_data:	The custom user data to pass to the instance on-bootup.
(optional)

Examples

{ "actor": "rightscale.mci.Create",
 "desc": "Create an MCI",
 "options": {
 "name": "Ubuntu i386 14.04",
 "description": "this is our test mci",
 "images": [
 {
 "cloud": "EC2 us-west-2",
 "image": "ami-e29774d1",
 "instance_type": "m1.small",
 "user_data": "cd /bin/bash"
 },
 {
 "cloud": "EC2 us-west-1",
 "image": "ami-b58142f1",
 "instance_type": "m1.small",
 "user_data": "cd /bin/bash"
 }
]
 }
}

	
class kingpin.actors.rightscale.mci.Destroy(*args, **kwargs)[source]

	Deletes a RightScale MCI.

Options match the documentation in RightScale:
http://reference.rightscale.com/api1.5/resources/ResourceMultiCloudImages.html

Options

	Name:	The name of the multi cloud image to be deleted.

Examples

{ "actor": "rightscale.mci.Destroy",
 "desc": "Create an MCI",
 "options": {
 "name": "Ubuntu i386 14.04",
 }
}

 Copyright 2015, Nextdoor.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Kingpin 0.4.0 documentation

 	Actors

Rollbar

Deploy

	
class kingpin.actors.rollbar.Deploy(*args, **kwargs)[source]

	Posts a Deploy message to Rollbar.

https://rollbar.com/docs/deploys_other/

API Token

You must use an API token created in your Project Access Tokens account
settings section. This token should have post_server_item permissions for
the actual deploy, and read permissions for the Dry run.

Options

	Environment:	The environment to deploy to

	Revision:	The deployment revision

	Local_username:	The user who initiated the deploy

	Rollbar_username:

		(Optional) The Rollbar Username to assign the deploy to

	Comment:	(Optional) Comment describing the deploy

Examples

{ "actor": "rollbar.Deploy",
 "desc": "update rollbar deploy",
 "options": {
 "environment": "Prod",
 "revision": "%DEPLOY%",
 "local_username": "Kingpin",
 "rollbar_username": "Kingpin",
 "comment": "some comment %DEPLOY%"
 }
}

Dry Mode

Accesses the Rollbar API and validates that the token can access your
project.

 Copyright 2015, Nextdoor.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Kingpin 0.4.0 documentation

 	Actors

Slack

Message

	
class kingpin.actors.slack.Message(*args, **kwargs)[source]

	Sends a message to a channel in Slack.

Options

	Channel:	The string-name of the channel to send a message to, or a list of
channels

	Message:	String of the message to send

Examples

{ "desc": "Let the Engineers know things are happening",
 "actor": "slack.Message",
 "options": {
 "channel": "#operations",
 "message": "Beginning Deploy: %VER%"
 }
}

Dry Mode

Fully supported – does not actually send messages to a room, but validates
that the API credentials would have access to send the message using the
Slack auth.test API method.

 Copyright 2015, Nextdoor.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Kingpin 0.4.0 documentation

Security

URLLIB3 Warnings Disabled

Recently urllib3 library has started issuing
InsecurePlatformWarning [https://urllib3.readthedocs.org/en/latest/security.html#insecureplatformwarning].
We suppress urllib3 warnings to limit log output to Kingpin’s own.

 Copyright 2015, Nextdoor.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Kingpin 0.4.0 documentation

Development

Setting up your Environment

Create your VirtualEnvironment

$ virtualenv .venv --no-site-packages
New python executable in .venv/bin/python
Installing setuptools, pip...done.
$ source .venv/bin/activate

Check out the code

(.venv) $ git clone git@github.com:Nextdoor/kingpin
Cloning into 'kingpin'...
Warning: Permanently added 'github.com,192.30.252.128' (RSA) to the list of known hosts.
remote: Counting objects: 1831, done.
remote: irangedCompressing objects: 100% (17/17), done.
remote: Total 1831 (delta 7), reused 0 (delta 0)
Receiving objects: 100% (1831/1831), 287.68 KiB, done.
Resolving deltas: 100% (1333/1333), done.

Install the test-specific dependencies

(.venv) $ pip install -r kingpin/requirements.test.txt
...
(.venv) $ cd kingpin
(.venv) $ python setup.py test
...

Testing

Unit Tests

The code is 100% unit test coverage complete, and no pull-requests will be
accepted that do not maintain this level of coverage. That said, it’s possible
(likely) that we have not covered every possible scenario in our unit tests
that could cause failures. We will strive to fill out every reasonable failure
scenario.

Integration Tests

Because it’s hard to predict cloud failures, we provide integration tests for
most of our modules. These integration tests actually go off and execute real
operations in your accounts, and rely on particular environments being setup
in order to run. These tests are great to run though to validate that your
credentials are all correct.

Executing the tests

HIPCHAT_TOKEN=<xxx> RIGHTSCALE_TOKEN=<xxx> INTEGRATION_TESTS=<comma separated list> make integration

...
integration_02a_clone (integration_server_array.IntegrationServerArray) ... ok
integration_test_execute_real (integration_hipchat.IntegrationHipchatMessage) ... ok
integration_test_execute_with_invalid_creds (integration_hipchat.IntegrationHipchatMessage) ... ok
integration_test_init_without_environment_creds (integration_hipchat.IntegrationHipchatMessage) ... ok

...

kingpin.utils 67 30 55% 57-69, 78, 93-120, 192-202
--
TOTAL 571 143 75%
--
Ran 10 tests in 880.274s

OK
running pep8
running pyflakes

Executing Only Certain Test Suites

Because not everyone will use or need to test all of our actors, you can
execute only certain subsets of our integration tests if you wish. Simply set
the INTEGRATION_TESTS environment variable to a comma-separated list of test
suites. See below for the list.

Executing only the HTTP Tests

(.venv)Matts-MacBook-2:kingpin diranged$ INTEGRATION_TESTS=http make integration
INTEGRATION_TESTS=http PYFLAKES_NODOCTEST=True \
 python setup.py integration pep8 pyflakes
running integration
integration_base_get (integration_api.IntegrationRestConsumer) ... ok
integration_delete (integration_api.IntegrationRestConsumer) ... ok
integration_get_basic_auth (integration_api.IntegrationRestConsumer) ... ok
integration_get_basic_auth_401 (integration_api.IntegrationRestConsumer) ... ok
integration_get_json (integration_api.IntegrationRestConsumer) ... ok
integration_get_with_args (integration_api.IntegrationRestConsumer) ... ok
integration_post (integration_api.IntegrationRestConsumer) ... ok
integration_put (integration_api.IntegrationRestConsumer) ... ok
integration_status_401 (integration_api.IntegrationRestConsumer) ... ok
integration_status_403 (integration_api.IntegrationRestConsumer) ... ok
integration_status_500 (integration_api.IntegrationRestConsumer) ... ok
integration_status_501 (integration_api.IntegrationRestConsumer) ... ok
...

List of Built-In Integration Test Suites

	aws

	librato

	rightscale

	http

	hipchat

	pingdom

	rollbar

	pingdom

	slack

Class/Object Architecture

kingpin.rb
|
+-- deployment.Deployer
 | Executes a deployment based on the supplied DSL.
 |
 +-- actors.rightscale
 | | RightScale Cloud Management Actor
 | |
 | +-- server_array
 | +-- Clone
 | +-- Destroy
 | +-- Execute
 | +-- Launch
 | +-- Update
 |
 +-- actors.aws
 | | Amazon Web Services Actor
 | |
 | +-- elb
 | | +-- WaitUntilHealthy
 | |
 | +-- sqs
 | +-- Create
 | +-- Delete
 | +-- WaitUntilEmpty
 |
 +-- actors.email
 | | Email Actor
 |
 +-- actors.hipchat
 | | Hipchat Actor
 | |
 | +-- Message
 |
 +-- actors.librato
 | Librato Metric Actor
 |
 +-- Annotation

Actor Design

Kingpin Actors are self-contained python classes that execute operations
asynchronously. Actors should follow a consistent structure (described below)
and be written to be as fault tolerant as possible.

Example - Hello World

This is the basic structure for an actor class.

import os

from tornado import gen

from kingpin.actors import base
from kingpin.actors import exceptions

All actors must have an __author__ tag. This is used actively
by the Kingpin code, do not forget this!
__author__ = 'Billy Joe Armstrong <american_idiot@broadway.com>'

Perhaps you need an API token?
TOKEN = os.getenv('HELLO_WORLD_TOKEN', None)

class HelloWorld(base.BaseActor):
 # Create an all_options dictionary that contains all of
 # the required and optional options that can be passed into
 # this actor.
 all_options = {
 'name': (str, None, 'Your name'),
 'world': (str, None, 'World we\'re saying hello to!'),
 }

 # Optionally, if you need to do any instantiation-level, non-blocking
 # validation checks (for example, looking for an API token) you can do
 # them in the __init__. Do *not* put blocking code in here.
 def __init__(self, *args, **kwargs):
 super(HelloWorld, self).__init__(*args, **kwargs)
 if not TOKEN:
 raise exceptions.InvalidCredentials(
 'Missing the "HELLO_WORLD_TOKEN" environment variable.')

 # Initialize our hello world sender object. This is non-blocking.
 self._hello_world = my.HelloWorldSender(token=TOKEN)

 # Its nice to wrap some of your logic into separate methods. This
 # method handles sending the message, or pretends to send the
 # message if we're in a dry run.
 @gen.coroutine
 def _send_message(self, name, world):
 # Attempt to log into the API to sanity check our credentials
 try:
 yield self._hello_world.login()
 except Shoplifter:
 msg = 'Could not log into the world!'
 raise exceptions.UnrecoverableActorFailure(msg)

 # Make sure to support DRY mode all the time!
 if self._dry:
 self.log.info('Would have said Hi to %s' % world)
 raise gen.Return()

 # Finally, send the message!
 try:
 res = yield self._hello_world.send(
 from=name, to=world)
 except WalkingAlone as e:
 # Lets say that this error is completely un-handleable exception,
 # there's no one to say hello to!
 self.log.critical('Some extra information about this error...')

 # Now, raise an exception that is will stop execution of Kingpin,
 # regardless of the warn_on_failure setting.
 raise exceptions.UnrecoverableActorException('Oh my: %s' % e)

 # Return the value back to the execute method
 raise gen.Return(res)

 # The meat of the work happens in the _execute() method. This method
 # is called by the BaseActor.execute() method. Your method must be
 # wrapped in a gen.Coroutine wrapper. Note, the _execute() method takes
 # no arguments, all arguments for the acter were passed in to the
 # __init__() method.
 @gen.coroutine
 def _execute(self):
 self.log.debug('Warming up the HelloWorld Actor')

 # Fire off an async request to a our private method for sending
 # hello world messages. Get the response and evaluate
 res = yield self._send_message(
 self.option('name'), self.option('world'))

 # Got a response. Did our message really go through though?
 if not res:
 # The world refuses to hear our message... A shame, really, but
 # not entirely critical.
 self.log.error('We failed to get our message out ... just '
 'letting you know!')
 raise exceptions.RecoverableActorFailure(
 'A shame, but I suppose they can listen to what they want')

 # We've been heard!
 self.log.info('%s people have heard our message!' % res)

 # Indicate to Tornado that we're done with our execution.
 raise gen.Return()

Actor Parameters

The following parameters are baked into our
BaseActor model and must be supported by any
actor that subclasses it. They are fundamentally critical to the behavior of
Kingpin, and should not be bypassed or ignored.

desc

A string describing the stage or action thats occuring. Meant to be human
readable and useful for logging. You do not need to do anything intentinally to
support this option (it’s handled in BaseActor).
All logging (when using self.log()) are passed through a custom
LogAdapter.

dry

All Actors must support a dry run flag. The codepath thats executed when
_execute() is yielded should be as wet as possible without actually making
any changes. For example, if you have an actor that checks the state of an
Amazon ELB (hint see kingpin.actors.aws.elb.WaitUntilHealthy), you
would want the actor to actually search Amazons API for the ELB, actually check
the number of instances that are healthy in the ELB, and then fake a return
value so that the rest of the script can be tested.

options

Your actor can take in custom options (ELB name, Route53 DNS entry name, etc)
through a dictionary named options thats passed in to every actor and
accessible through the option()
method. The contents of this dictionary are entirely up to you.

These options are defined in your class’s all_options dict. A simple example:

from kingpin.constants import REQUIRED

class SayHi(object):
 all_options = {
 'name': (str, REQUIRED, 'What is your name?')
 }

 @gen.coroutine
 def _execute(self):
 self.log.info('Hi %s' % self.option('name'))

For more complex user input validation, see kingpin.actors.utils.dry().

warn_on_failure (optional)

If the user sets warn_on_failure=True, any raised exceptions that subclass
kingpin.actors.exceptions.RecoverableActorFailure will be swallowed up and
warned about, but will not cause the execution of the kingpin script to end.

Exceptions that subclass kingpin.actors.exceptions.UnrecoverableActorFailure
(or uncaught third party exceptions) will cause the actor to fail and the
script to be aborted no matter what!

Required Methods

_execute() method

Your actor can execute any code you would like in the _execute() method. This
method should make sure that it’s a tornado-style generator (thus, can be
yielded), and that it never calls any blocking operations.

Actors must not:

	Call a blocking operation ever

	Call an async operation from inside the init() method

	Bypass normal logging methods

	return a result (should raise gen.Return(...))

Actors must:

	Subclass kingpin.actors.base.BaseActor

	Include __author__ attribute thats a single string with the
owners listed in it.

	Implement a *_execute()* method

	Handle as many possible exceptions of third-party libraries as possible

	Return None when the actor has succeeded.

Actors can:

	Raise kingpin.actors.exceptions.UnrecoverableActorFailure.
This is considered an unrecoverable exception and no Kingpin will not
execute any further actors when this happens.

	Raise kingpin.actors.exceptions.RecoverableActorFailure.
This is considered an error in execution, but is either expected or at
least cleanly handled in the code. It allows the user to specify
warn_on_failure=True, where they can then continue on in the script
even if an actor fails.

Super simple example Actor _execute() method

@gen.coroutine
def _execute(self):
 self.log.info('Making that web call')
 res = yield self._post_web_call(URL)
 raise gen.Return(res)

Recommended Design Patterns

State Management Actors

While many of our actors are designed as code that “does something once” – ie,
“Create User Foo” – we are increasingly seeing actors that “ensure a resource
exists.” This new pattern is a bit more Puppet-like, and more well suited for
ensuring the state of cloud resources rather than simply creating or destrying
things.

To that end, we have a few recommended guidelines for patterns to follow when
creating actors like this. These guidelines will help breed consistency between
our various actors so that users are never surprised by their behavior.

Resource attributes should be managed explicitly

(See this http://github.com/Nextdoor/issues/342 for more discussion)

Generally speaking, if an actor manages a resource (call it a User), any
parameters, sub resources like group memberships or other attributes should
only be managed by the Actor if they are explicitly defined by the user.

For example, the following code should create a user, and do absolutely nothing
else to the user. Any additional attirbutes (group memberships, or inline IAM
policies) should not be managed:

{ "actor": "aws.iam.User",
 "options": {
 "name": "myuser",
 "state": "present"
 }
}

On the other hand, if the user does supply groups or inline_policies, the actor
should explicitly manage those and ensure that they exactly match what was
supplied:

{ "actor": "aws.iam.User",
 "options": {
 "name": "myuser",
 "state": "present"
 "inline_policies": "my-policy.json",
 "groups": [
 "admin", "engineers"
]
 }
}

In this case, the myuser account should have its groups and inline policies
exactly set to the above settings, and anything that was found to be mismatched
in Amazon should be wiped out.

Helper Methods/Objects

self.__class__.desc

The “description” of a particular actor is a parameter that the user can supply
through the JSON if they wish. If no description is supplied, a default
description is supplied by the actor’s self.__class__.desc attribute. If your
actor wants to supply its own default description, it can be done like this:

class Sleep(object):
 desc = "Sleeping for {sleep}s"
 all_options = {
 'sleep': (int), REQUIRED, 'Number of seconds to do nothing.')
 }

(.venv)Matts-MacBook-2:kingpin diranged$ python kingpin/bin/deploy.py --color --debug -a misc.Sleep -o sleep=10 --dry
09:55:08 DEBUG 33688 [kingpin.actors.utils] [get_actor_class] Tried importing "misc.Sleep" but failed: No module named misc
09:55:08 DEBUG 33688 [kingpin.actors.misc.Sleep] [_validate_options] [DRY: Sleeping for 10s] Checking for required options: ['sleep']
09:55:08 DEBUG 33688 [kingpin.actors.misc.Sleep] [__init__] [DRY: Sleeping for 10s] Initialized (warn_on_failure=False, strict_init_context=True)
09:55:08 INFO 33688 [__main__] [main]
09:55:08 WARNING 33688 [__main__] [main] Lights, camera ... action!
09:55:08 INFO 33688 [__main__] [main]
09:55:08 DEBUG 33688 [kingpin.actors.misc.Sleep] [execute] [DRY: Sleeping for 10s] Beginning
09:55:08 DEBUG 33688 [kingpin.actors.misc.Sleep] [_check_condition] [DRY: Sleeping for 10s] Condition True evaluates to True
09:55:08 DEBUG 33688 [kingpin.actors.misc.Sleep] [timeout] [DRY: Sleeping for 10s] kingpin.actors.misc.Sleep._execute() deadline: 3600(s)
09:55:08 DEBUG 33688 [kingpin.actors.misc.Sleep] [_execute] [DRY: Sleeping for 10s] Sleeping for 10 seconds
09:55:08 DEBUG 33688 [kingpin.actors.misc.Sleep] [execute] [DRY: Sleeping for 10s] Finished successfully, return value: None
09:55:08 DEBUG 33688 [kingpin.actors.misc.Sleep] [_wrap_in_timer] [DRY: Sleeping for 10s] kingpin.actors.misc.Sleep.execute() execution time: 0.00s

The format() [https://docs.python.org/2/library/stdtypes.html#str.format]
is called with the following key/values as possible variables that can be
parsed at runtime:

	actor: The Actor Package and Class – ie, kingpin.actors.misc.Sleep in
the example above.

	**self._options: The entire set of options passed into the actor, broken
out by key/value.

self.log()

For consistency in logging, a custom Logger object is instantiated for every
Actor. This logging object ensures that prefixes such as the desc of an Actor
are included in the log messages. Usage examples:

self.log.error('Hey, something failed')
self.log.info('I am doing work')
self.log.warning('I do not think that should have happened')

self.option()

Accessing options passed to the actor from the JSON file should be done via
self.option() method. Accessing self._options parameter is not recommended,
and the edge cases should be handled via the all_options class variable.

kingpin.actors.utils.dry()

The kingpin.actors.utils.dry() wrapper quickly allows you to make a
call dry – so it only warns about execution during a dry run rather than
actually executing.

User Option Validation

While you can rely on options for simple validation of strings,
bools, etc – you may find yourself needing to validate more complex user
inputs. Regular expressions, lists of valid strings, or even full JSON schema
validations.

The Self-Validating Class

If you create a class with a validate() method, Kingpin will automatically
validate a users input against that method. Here’s a super simple example that
only accepts words that start with the letter X.

from kingpin.actors.exceptions import InvalidOptions

class OnlyStartsWithX(object):
 @classmethod
 def validate(self, option):
 if not option.startswith('X'):
 raise InvalidOptions('Must start with X: %s' % option)

class MyActor(object):
 all_options = {
 (OnlyStartsWithX, REQUIRED, 'Any string that starts with an X')
 }

Pre-Built Option Validators

We have created a few useful option validators that you can easily leverage in
your own code:

	kingpin.constants.StringCompareBase

	kingpin.constants.SchemaCompareBase

Exception Handling

Simple API Access Objects

Most of the APIs out there leverage basic REST with JSON or XML as the data
encoding method. Since these APIs behave similarly, we have created a simple
API access object that can be extended for creating actors quickly. The object
is called a RestConsumer and is in the kingpin.actors.support.api package.
This RestConsumer can be subclassed and filled in with a dict that
describes the API in detail.

HTTPBin Actor with the RestConsumer

HTTPBIN = {
 'path': '/',
 'http_methods': {'get': {}},
 'attrs': {
 'get': {
 'path': '/get',
 'http_methods': {'get': {}},
 },
 'post': {
 'path': '/post',
 'http_methods': {'post': {}},
 },
 'put': {
 'path': '/put',
 'http_methods': {'put': {}},
 },
 'delete': {
 'path': '/delete',
 'http_methods': {'delete': {}},
 },
 }
}

class HTTPBinRestClient(api.RestConsumer):

 _CONFIG = HTTPBIN
 _ENDPOINT = 'http://httpbin.org'

class HTTPBinGetThenPost(base.BaseActor):
 def __init__(self, *args, **kwargs):
 super(HTTPBinGetThenPost, self).__init__(*args, **kwargs)
 self._api = HTTPBinRestClient()

 @gen.coroutine
 def _execute(self):
 yield self._api.get().http_get()

 if self._dry
 raise gen.Return()

 yield self._api.post().http_post(foo='bar')

 raise gen.Return()

Exception Handling in HTTP Requests

The RestClient.fetch() method has been wrapped in a retry decorator that
allows you to define different behaviors based on the exceptions returned from
the fetch method. For example, you may want to handle an HTTPError exception
with a 401 error code differently than a 503 error code.

You can customize the exception handling by subclassing the
RestClient:

class MyRestClient(api.RestClient):
 _EXCEPTIONS = {
 httpclient.HTTPError: {
 '401': my.CustomException(),
 '403': exceptions.InvalidCredentials,
 '500': my.UnretryableError(),
 '502': exceptions.InvalidOptions,

 # This acts as a catch-all
 '': exceptions.RecoverableActorFailure,
 }
 }

 Copyright 2015, Nextdoor.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Kingpin 0.4.0 documentation

Full Module Docs

kingpin.actors.aws.base

The AWS Actors allow you to interact with the resources (such as SQS and ELB)
inside your Amazon AWS account. These actors all support dry runs properly, but
each actor has its own caveats with dry=True. Please read the instructions
below for using each actor.

Required Environment Variables

Note, these can be skipped only if you have a .aws/credentials file in place.

	AWS_ACCESS_KEY_ID:

		Your AWS access key

	AWS_SECRET_ACCESS_KEY:

		Your AWS secret

	
exception kingpin.actors.aws.base.ELBNotFound[source]

	Raised when an ELB is not found

	
exception kingpin.actors.aws.base.InvalidMetaData[source]

	Raised when fetching AWS metadata.

	
exception kingpin.actors.aws.base.InvalidPolicy[source]

	Raised when Amazon indicates that policy JSON is invalid.

kingpin.actors.aws.cloudformation

	
exception kingpin.actors.aws.cloudformation.CloudFormationError[source]

	Raised on any generic CloudFormation error.

	
exception kingpin.actors.aws.cloudformation.InvalidTemplate[source]

	An invalid CloudFormation template was supplied.

	
exception kingpin.actors.aws.cloudformation.StackAlreadyExists[source]

	The requested CloudFormation stack already exists.

	
exception kingpin.actors.aws.cloudformation.StackNotFound[source]

	The requested CloudFormation stack does not exist.

	
class kingpin.actors.aws.cloudformation.CloudFormationBaseActor(*args, **kwargs)[source]

	Base Actor for CloudFormation tasks

	
class kingpin.actors.aws.cloudformation.Create(*args, **kwargs)[source]

	Creates a CloudFormation stack.

Creates a CloudFormation stack from scratch and waits until the stack is
fully built before exiting the actor.

Options

	Capabilities:	A list of CF capabilities to add to the stack.

	Disable_rollback:

		Set to True to disable rollback of the stack if creation failed.

	Name:	The name of the queue to create

	Parameters:	A dictionary of key/value pairs used to fill in the parameters for the
CloudFormation template.

	Region:	AWS region (or zone) string, like ‘us-west-2’

	Template:	String of path to CloudFormation template. Can either be in the form of a
local file path (ie, /my_template.json) or a URI (ie
https://my_site.com/cf.json).

	Timeout_in_minutes:

		The amount of time that can pass before the stack status becomes
CREATE_FAILED.

Examples

{ "desc": "Create production backend stack",
 "actor": "aws.cloudformation.Create",
 "options": {
 "capabilities": ["CAPABILITY_IAM"],
 "disable_rollback": true,
 "name": "%CF_NAME%",
 "parameters": {
 "test_param": "%TEST_PARAM_NAME%",
 },
 "region": "us-west-1",
 "template": "/examples/cloudformation_test.json",
 "timeout_in_minutes": 45,
 }
}

Dry Mode

Validates the template, verifies that an existing stack with that name does
not exist. Does not create the stack.

	
class kingpin.actors.aws.cloudformation.Delete(*args, **kwargs)[source]

	Deletes a CloudFormation stack

Options

	Name:	The name of the queue to create

	Region:	AWS region (or zone) string, like ‘us-west-2’

Examples

{ "desc": "Delete production backend stack",
 "actor": "aws.cloudformation.Create",
 "options" {
 "region": "us-west-1",
 "name": "%CF_NAME%",
 }
}

Dry Mode

Validates that the CF stack exists, but does not delete it.

kingpin.actors.aws.elb

	
exception kingpin.actors.aws.elb.CertNotFound[source]

	Raised when an ELB is not found

	
kingpin.actors.aws.elb.p2f(string)[source]

	Convert percentage string into float.

Converts string like ‘78.9%’ into 0.789

	
class kingpin.actors.aws.elb.ELBBaseActor(*args, **kwargs)[source]

	Base class for ELB actors.

	
class kingpin.actors.aws.elb.WaitUntilHealthy(*args, **kwargs)[source]

	Wait indefinitely until a specified ELB is considered “healthy”.

This actor will loop infinitely until a healthy threshold of the ELB is
met. The threshold can be reached when the count as specified in the
options is less than or equal to the number of InService instances in the
ELB.

Another situation is for count to be a string specifying a percentage
(see examples). In this case the percent of InService instances has to be
greater than the count percentage.

Options

	Name:	The name of the ELB to operate on

	Count:	Number, or percentage of InService instance to consider this ELB healthy

	Region:	AWS region (or zone) name, such as us-east-1 or us-west-2

Examples

{ "actor": "aws.elb.WaitUntilHealthy",
 "desc": "Wait until production-frontend has 16 hosts",
 "options": {
 "name": "production-frontend",
 "count": 16,
 "region": "us-west-2"
 }
}

{ "actor": "aws.elb.WaitUntilHealthy",
 "desc": "Wait until production-frontend has 85% of hosts in-service",
 "options": {
 "name": "production-frontend",
 "count": "85%",
 "region": "us-west-2"
 }
}

Dry Mode

This actor performs the finding of the ELB as well as calculating its
health at all times. The only difference in dry mode is that it will not
re-count the instances if the ELB is not healthy. A log message will be
printed indicating that the run is dry, and the actor will exit with
success.

	
class kingpin.actors.aws.elb.SetCert(*args, **kwargs)[source]

	Find a server cert in IAM and use it for a specified ELB.

Options

	Region:	(str) AWS region (or zone) name, like us-west-2

	Name:	(str) Name of the ELB

	Cert_name:	(str) Unique IAM certificate name, or ARN

	Port:	(int) Port associated with the cert.
(default: 443)

Example

{ "actor": "aws.elb.SetCert",
 "desc": "Run SetCert",
 "options": {
 "cert_name": "new-cert",
 "name": "some-elb",
 "region": "us-west-2"
 }
}

Dry run

Will check that ELB and Cert names are existent, and will also check that
the credentials provided for AWS have access to the new cert for ssl.

	
class kingpin.actors.aws.elb.RegisterInstance(*args, **kwargs)[source]

	Add an EC2 instance to a load balancer.

Options

	Elb:	(str) Name of the ELB

	Instances:	(str, list) Instance id, or list of ids. Default “self” id.

	Region:	(str) AWS region (or zone) name, like us-west-2

	Enable_zones:	(bool) add all available AZ to the elb. Default: True

Example

{ "actor": "aws.elb.RegisterInstance",
 "desc": "Run RegisterInstance",
 "options": {
 "elb": "prod-loadbalancer",
 "instances": "i-123456",
 "region": "us-east-1",
 }
}

Dry run

Will find the specified ELB, but not take any actions regarding instances.

	
class kingpin.actors.aws.elb.DeregisterInstance(*args, **kwargs)[source]

	Remove EC2 instance(s) from an ELB.

Options

	Elb:	(str) Name of the ELB. Optionally this may also be a *.

	Instances:	(str, list) Instance id, or list of ids

	Region:	(str) AWS region (or zone) name, like us-west-2

	Wait_on_draining:

		(bool) Whether or not to wait for connection draining

Example

{ "actor": "aws.elb.DeregisterInstance",
 "desc": "Run DeregisterInstance",
 "options": {
 "elb": "my-webserver-elb",
 "instances": "i-abcdeft",
 "region": "us-west-2"
 }
}

Extremely simple way to remove the local instance running this code from
all ELBs its been joined to:

{ "actor": "aws.elb.DeregisterInstance",
 "desc": "Run DeregisterInstance",
 "options": {
 "elb": "*",
 "region": "us-west-2"
 }
}

Dry run

Will find the ELB but not take any actions regarding the instances.

kingpin.actors.aws.iam

	
class kingpin.actors.aws.iam.User(*args, **kwargs)[source]

	Manages an IAM User.

This actor manages the state of an Amazon IAM User.

Currently we can:

	Ensure is present or absent

	Manage the inline policies for the user

	Manage the groups the user is in

Options

	Name:	(str) Name of the User profile to manage

	State:	(str) Present or Absent. Default: “present”

	Groups:	(str,array) A list of groups for the user to be a member of.
Default: None

	Inline_policies:

		(str,array) A list of strings that point to JSON files to use as inline
policies.
Default: None

Example

{ "actor": "aws.iam.User",
 "desc": "Ensure that Bob exists",
 "options": {
 "name": "bob",
 "state": "present",
 "groups": "my-test-group",
 "inline_policies": [
 "read-all-s3.json",
 "create-other-stuff.json"
]
 }
}

Dry run

Will let you know if the user exists or not, and what changes it would make
to the users policy and settings. Will also parse the inline policies
supplied, make sure any tokens in the files are replaced, and that the
files are valid JSON.

	
class kingpin.actors.aws.iam.Group(*args, **kwargs)[source]

	Manages an IAM Group.

This actor manages the state of an Amazon IAM Group.

Currently we can:

	Ensure is present or absent

	Manage the inline policies for the group

	Purge (or not) all group members and delete the group

Options

	Name:	(str) Name of the Group profile to manage

	Force:	(bool) Forcefully delete the group (explicitly purging all group
memberships).
Default: false

	State:	(str) Present or Absent. Default: “present”

	Inline_policies:

		(str,array) A list of strings that point to JSON files to use as inline
policies. You can also pass in a single inline policy as a string.
Default: None

Example

{ "actor": "aws.iam.Group",
 "desc": "Ensure that devtools exists",
 "options": {
 "name": "devtools",
 "state": "present",
 "inline_policies": [
 "read-all-s3.json",
 "create-other-stuff.json"
]
 }
}

Dry run

Will let you know if the group exists or not, and what changes it would
make to the groups policy and settings. Will also parse the inline policies
supplied, make sure any tokens in the files are replaced, and that the
files are valid JSON.

	
class kingpin.actors.aws.iam.Role(*args, **kwargs)[source]

	Manages an IAM Role.

This actor manages the state of an Amazon IAM Role.

Currently we can:

	Ensure is present or absent

	Manage the inline policies for the role

	Manage the Assume Role Policy Document

Options

	Name:	(str) Name of the Role to manage

	State:	(str) Present or Absent. Default: “present”

	Inline_policies:

		(str,array) A list of strings that point to JSON files to use as inline
policies. You can also pass in a single inline policy as a string.
Default: None

	Assume_role_policy_document:

		(str) A string with an Amazon IAM Assume Role policy. Not providing this
causes Kingpin to ignore the value, and Amazon defaults the role to an
‘EC2’ style rule. Supplying the document will cause Kingpin to ensure the
assume role policy is correct.
Default: None

Example

{ "actor": "aws.iam.Role",
 "desc": "Ensure that myapp exists",
 "options": {
 "name": "myapp",
 "state": "present",
 "inline_policies": [
 "read-all-s3.json",
 "create-other-stuff.json"
]
 }
}

Dry run

Will let you know if the group exists or not, and what changes it would
make to the groups policy and settings. Will also parse the inline policies
supplied, make sure any tokens in the files are replaced, and that the
files are valid JSON.

	
class kingpin.actors.aws.iam.InstanceProfile(*args, **kwargs)[source]

	Manages an IAM Instance Profile.

This actor manages the state of an Amazon IAM Instance Profile.

Currently we can:

	Ensure is present or absent

	Assign an IAM Role to the Instance Profile

Options

	Name:	(str) Name of the Role to manage

	State:	(str) Present or Absent. Default: “present”

	Role:	(str) Name of an IAM Role to assign to the Instance Profile.
Default: None

Example

{ "actor": "aws.iam.InstanceProfile",
 "desc": "Ensure that my-ecs-servers exists",
 "options": {
 "name": "my-ecs-servers",
 "state": "present",
 "role": "some-iam-role",
 }
}

Dry run

Will let you know if the profile exists or not, and what changes it would
make to the profile.

	
class kingpin.actors.aws.iam.UploadCert(*args, **kwargs)[source]

	Uploads a new SSL Cert to AWS IAM.

Options

	Private_key_path:

		(str) Path to the private key.

	Path:	(str) The AWS “path” for the server certificate. Default: “/”

	Public_key_path:

		(str) Path to the public key certificate.

	Name:	(str) The name for the server certificate.

	Cert_chain_path:

		(str) Path to the certificate chain. Optional.

Example

{ "actor": "aws.iam.UploadCert",
 "desc": "Upload a new cert",
 "options": {
 "name": "new-cert",
 "private_key_path": "/cert.key",
 "public_key_path": "/cert.pem",
 "cert_chain_path": "/cert-chain.pem"
 }
}

Dry run

Checks that the passed file paths are valid. In the future will also
validate that the files are of correct format and content.

	
class kingpin.actors.aws.iam.DeleteCert(*args, **kwargs)[source]

	Delete an existing SSL Cert in AWS IAM.

Options

	Name:	(str) The name for the server certificate.

Example

{ "actor": "aws.iam.DeleteCert",
 "desc": "Run DeleteCert",
 "options": {
 "name": "fill-in"
 }
}

Dry run

Will find the cert by name or raise an exception if it’s not found.

kingpin.actors.aws.settings

Common settings used by many of the kingpin.actors.aws modules.

	
kingpin.actors.aws.settings.is_retriable_exception(exception)[source]

	Return true if this AWS exception is transient and should be retried.

	Example:

	>>> @retry(retry_on_exception=is_retriable_exception)

kingpin.actors.aws.sqs

	
exception kingpin.actors.aws.sqs.QueueNotFound[source]

	Raised by SQS Actor when a needed queue is not found.

	
exception kingpin.actors.aws.sqs.QueueDeletionFailed[source]

	Raised if Boto fails to delete an SQS queue.

	http://boto.readthedocs.org/en/latest/ref/

	sqs.html#boto.sqs.connection.SQSConnection.delete_queue

	
class kingpin.actors.aws.sqs.Create(*args, **kwargs)[source]

	Creates a new SQS queue with the specified name

Options

	Name:	(str) The name of the queue to create

	Region:	(str) AWS region (or zone) string, like ‘us-west-2’

Examples

{ "actor": "aws.sqs.Create",
 "desc": "Create queue named async-tasks",
 "options": {
 "name": "async-tasks",
 "region": "us-east-1",
 }
}

Dry Mode

Will not create any queue, or even contact SQS. Will create a mock.Mock
object and exit with success.

	
class kingpin.actors.aws.sqs.Delete(*args, **kwargs)[source]

	Deletes the SQS queues

Note: even if it`s not empty

Options

	Name:	(str) The name of the queue to destroy

	Region:	(str) AWS region (or zone) string, like ‘us-west-2’

	Idempotent:	(bool) Will not raise errors if no matching queues are found.
(default: False)

Examples

{ "actor": "aws.sqs.Delete",
 "desc": "Delete queue async-tasks",
 "options": {
 "name": "async-tasks",
 "region": "us-east-1"
 }
}

{ "actor": "aws.sqs.Delete",
 "desc": "Delete queues with 1234 in the name",
 "options": {
 "name": "1234",
 "region": "us-east-1"
 }
}

Dry Mode

Will find the specified queue, but will have a noop regarding its deletion.
Dry mode will fail if no queues are found, and idempotent flag is set to
False.

	
class kingpin.actors.aws.sqs.WaitUntilEmpty(*args, **kwargs)[source]

	Wait indefinitely until for SQS queues to become empty

This actor will loop infinitely as long as the count of messages in at
least one queue is greater than zero. SQS does not guarantee exact count,
so this can return a stale value if the number of messages in the queue
changes rapidly.

Options

	Name:	(str) The name or regex pattern of the queues to operate on

	Region:	(str) AWS region (or zone) string, like ‘us-west-2’

	Required:	(bool) Fail if no matching queues are found.
(default: False)

Examples

{ "actor": "aws.sqs.WaitUntilEmpty",
 "desc": "Wait until release-0025a* queues are empty",
 "options": {
 "name": "release-0025a",
 "region": "us-east-1",
 "required": true
 }
}

Dry Mode

This actor performs the finding of the queue, but will pretend that the
count is 0 and return success. Will fail even in dry mode if required
option is set to True and no queues with the name pattern are found.

kingpin.actors.aws.s3

	
exception kingpin.actors.aws.s3.InvalidBucketConfig[source]

	Raised whenever an invalid option is passed to a Bucket

	
class kingpin.actors.aws.s3.LoggingConfig[source]

	Provides JSON-Schema based validation of the supplied logging config.

The S3 LoggingConfig format should look like this:

{ "target": "s3_bucket_name_here",
 "prefix": "an_optional_prefix_here" }

If you supply an empty target, then we will explicitly remove the logging
configuration from the bucket. Example:

{ "target": "" }

	
class kingpin.actors.aws.s3.LifecycleConfig[source]

	Provides JSON-Schema based validation of the supplied Lifecycle config.

The S3 Lifecycle system allows for many unique configurations. Each
configuration object defined in this schema will be turned into a
boto.s3.lifecycle.Rule [http://boto.cloudhackers.com/en/latest/ref/s3.html#boto.s3.lifecycle.Rule] object. All of the rules together will
be turned into a boto.s3.lifecycle.Lifecycle [http://boto.cloudhackers.com/en/latest/ref/s3.html#boto.s3.lifecycle.Lifecycle] object.

[
 { "id": "unique_rule_identifier",
 "prefix": "/some_path",
 "status": "Enabled",
 "expiration": 365,
 "transition": {
 "days": 90,
 "date": "2016-05-19T20:04:17+00:00",
 "storage_class": "GLACIER",
 }
 }
]

	
class kingpin.actors.aws.s3.S3BaseActor(*args, **kwargs)[source]

	Base class for S3 actors.

	
class kingpin.actors.aws.s3.Bucket(*args, **kwargs)[source]

	Manage the state of a single S3 Bucket.

The actor has the following functionality:

	Ensure that an S3 bucket is present or absent.

	Manage the bucket policy.

	Manage the bucket Lifecycle configurations.

	Enable or Suspend Bucket Versioning.
Note: It is impossible to actually _disable_ bucket versioning – once
it is enabled, you can only suspend it, or re-enable it.

Note about Buckets with Files

Amazon requires that an S3 bucket be empty in order to delete it. Although
we could recursively search for all files in the bucket and then delete
them, this is a wildly dangerous thing to do inside the confines of this
actor. Instead, we raise an exception and alert the you to the fact that
they need to delete the files themselves.

Options

	Name:	The name of the bucket to operate on

	State:	(str) Present or Absent. Default: “present”

	Lifecycle:	(LifecycleConfig, None)

A list of individual Lifecycle configurations. Each dictionary includes
keys for the id [https://docs.python.org/2.7/library/functions.html#id], prefix and status as required parameters.
Optionally you can supply an expiration and/or transition dictionary.

If an empty list is supplied, or the list in any way does not match what
is currently configured in Amazon, the appropriate changes will be made.

	Logging:	(LoggingConfig, None)

If a dictionary is supplied ({'target': 'logging_bucket', 'prefix':
'/mylogs'}), then we will configure bucket logging to the supplied
bucket and prefix. If prefix is missing then no prefix will be used.

If target is supplied as an empty string (''), then we will disable
logging on the bucket. If None [https://docs.python.org/2.7/library/constants.html#None] is supplied, we will not manage logging
either way.

	Policy:	(str, None) A JSON file with the bucket policy. Passing in a blank string
will cause any policy to be deleted. Passing in None (or not passing it
in at all) will cause Kingpin to ignore the policy for the bucket
entirely. Default: None

	Region:	AWS region (or zone) name, such as us-east-1 or us-west-2

	Versioning:	(bool, None): Whether or not to enable Versioning on the bucket. If
“None”, then we don’t manage versioning either way. Default: None

Examples

{ "actor": "aws.s3.Bucket",
 "options": {
 "name": "kingpin-integration-testing",
 "region": "us-west-2",
 "policy": "./examples/aws.s3/amazon_put.json",
 "lifecycle": {
 "id": "main",
 "prefix": "/",
 "status": "Enabled",
 "expiration": 30,
 },
 "logging": {
 "target": "logs.myco.com",
 "prefix": "/kingpin-integratin-testing"
 },
 "versioning": true,
 }
}

Dry Mode

Finds the bucket if it exists (or tells you it would create it). Describes
each potential change it would make to the bucket depending on the
configuration of the live bucket, and the options that were passed into the
actor.

Will gracefully fail and alert you if there are files in the bucket and you
are trying to delete it.

kingpin.actors.base

Base Actor object class

An Actor object is a class that executes a single logical action
on a resource as part of your deployment structure. For example, you
may have an Actor that launches a server array in RightScale, or you
may have one that sends an email.

Each Actor object should do one thing, and one thing only. Its responsible
for being able to execute the operation in both ‘dry’ and ‘non-dry’ modes.

The behavior for ‘dry’ mode can contain real API calls, but should not make
any live changes. It is up to the developer of the Actor to define what
‘dry’ mode looks like for that particular action.

	
class kingpin.actors.base.LogAdapter(logger, extra)[source]

	Simple Actor Logging Adapter.

Provides a common logging format for actors that uses the actors
description and dry parameter as a prefix to the supplied log message.

	
class kingpin.actors.base.BaseActor(desc=None, options={}, dry=False, warn_on_failure=False, condition=True, init_context={}, init_tokens={}, timeout=None)[source]

	Abstract base class for Actor objects.

	
option(name)[source]

	Return the value for a given Actor option.

	
readfile(path)[source]

	Return file contents as a string.

	Raises:

	InvalidOptions if file is not found, or readable.

	
timeout(*args, **kwargs)[source]

	Wraps a Coroutine method in a timeout.

Used to wrap the self.execute() method in a timeout that will raise an
ActorTimedOut exception if an actor takes too long to execute.

Note, Tornado 4+ does not allow you to actually kill a task on the
IOLoop. This means that all we are doing here is notifying the caller
(through the raised exception) that a problem has happened.

Fairly simple Actors should actually ‘stop executing’ when this
exception is raised. Complex actors with very unique behaviors though
(like the rightsacle.server_array.Execute actor) have the ability to
continue to execute in the background until the Kingpin application
quits. It is not the job of this method to try to kill these actors,
but just to let the user know that a failure has happened.

	
str2bool(v, strict=False)[source]

	Returns a Boolean from a variety of inputs.

	args:

	value: String/Bool
strict: Whether or not to _only_ convert the known words into
booleans, or whether to allow “any” word to be considered True
other than the known False words.

	returns:

	A boolean

	
class kingpin.actors.base.HTTPBaseActor(desc=None, options={}, dry=False, warn_on_failure=False, condition=True, init_context={}, init_tokens={}, timeout=None)[source]

	Abstract base class for an HTTP-client based Actor object.

This class provides common methods for getting access to asynchronous
HTTP clients, wrapping the executions in appropriate try/except blocks,
timeouts, etc.

If you’re writing an Actor that uses a remote REST API, this is the
base class you should subclass from.

kingpin.actors.exceptions

All common Actor exceptions

	
exception kingpin.actors.exceptions.ActorException[source]

	Base Kingpin Actor Exception

	
exception kingpin.actors.exceptions.RecoverableActorFailure[source]

	Base exception that allows script executions to continue on failure.

This exception class is used to throw an error when an Actor fails, but
it was an expected and/or acceptable failure.

This should be used for exceptions that are somewhat normal ... for
example, trying to delete a ServerArray thats already gone.

	
exception kingpin.actors.exceptions.UnrecoverableActorFailure[source]

	Base exception for unrecoverable failures.

This exception class should be used for critical failures that should
always stop a set of Kingpin actors in-place, regardless of the actors
warn_on_failure setting.

Examples would be when credentials are incorrect, or an unexpected
exception is caught and there is no known recovery point.

	
exception kingpin.actors.exceptions.ActorTimedOut[source]

	Raised when an Actor takes too long to execute

	
exception kingpin.actors.exceptions.InvalidActor[source]

	Raised when an invalid Actor name was supplied

	
exception kingpin.actors.exceptions.InvalidOptions[source]

	Invalid option arguments passed into the Actor object.

This can be used both for the actual options dict passed into the actor,
as well as if a the wrong options were used when connecting to a remote
API.

	
exception kingpin.actors.exceptions.InvalidCredentials[source]

	Invalid or missing credentials required for Actor object.

	
exception kingpin.actors.exceptions.UnparseableResponseFromEndpoint[source]

	Invalid response returned from a remote REST endpoint.

	
exception kingpin.actors.exceptions.BadRequest[source]

	An action failed due to a HTTP 400 error likely due to bad input.

kingpin.actors.group

Group a series of other BaseActor into either synchronous
or asynchronous stages.

	
class kingpin.actors.group.BaseGroupActor(*args, **kwargs)[source]

	Group together a series of other kingpin.actors.base.BaseActor objects

	Acts:	[<list of kingpin.actors.base.BaseActor objects to execute>]

	
class kingpin.actors.group.Sync(*args, **kwargs)[source]

	Execute a series of kingpin.actors.base.BaseActor synchronously.

Groups together a series of Actors and executes them synchronously
in the order that they were defined.

Options

	Acts:	An array of individual Actor definitions.

	Contexts:	This variable can be one of two formats:

	A list of dictionaries with contextual tokens to pass into the actors
at instantiation time. If the list has more than one element, then
every actor defined in acts will be instantiated once for each item
in the contexts list.

	A string that points to a file with a list of contexts, just like the
above dictionary.

	(_Deprecation warning, this is going away in v0.4.0. Use the ‘str’
method above!_) A dictionary of file and tokens. The file
should be a relative path with data formatted same as stated above. The
tokens need to be the same format as a Macro actor: a dictionary
passing token data to be used.

Timeouts

Timeouts are disabled specifically in this actor. The sub-actors can still
raise their own kingpin.actors.exceptions.ActorTimedOut exceptions, but
since the group actors run an arbitrary number of sub actors, we have
chosen to not have this actor specifically raise its own
kingpin.actors.exceptions.ActorTimedOut exception unless the user sets
the timeout setting.

Examples

Creates two arrays ... but sleeps 60 seconds between the two, then
does not sleep at all after the last one:

{ "desc": "Clone, then sleep ... then clone, then sleep shorter...",
 "actor": "group.Sync",
 "options": {
 "contexts": [
 { "ARRAY": "First", "SLEEP": "60", },
 { "ARRAY": "Second", "SLEEP": "0", }
],
 "acts": [
 { "desc": "do something",
 "actor": "server_array.Clone",
 "options": {
 "source": "template",
 "dest": "{ARRAY}"
 }
 },
 { "desc": "sleep",
 "actor": "misc.Sleep",
 "options": {
 "sleep": "{SLEEP}",
 }
 }
]
 }
}

Alternatively if no contexts are needed you can use the array [https://docs.python.org/2.7/library/array.html#module-array] syntax.

[
 {
 "actor": "server_array.Clone",
 "options": {
 "source": "template",
 "dest": "%ARRAY%"
 }
 },
 {
 "actor": "misc.Sleep",
 "options": { "sleep": 30 }
 }
]

Dry Mode

Passes on the Dry mode setting to the acts that are called. Does not
stop execution when one of the acts fails. Instead Group actor will finish
all acts with warnings, and raise an error at the end of execution.

This provides the user with an insight to all the errors that are possible
to encounter, rather than abort and quit on the first one.

Failure

In the event that an act fails, this actor will return the failure
immediately. Because the acts are executed in-order of definition, the
failure will prevent any further acts from executing.

The behavior is different in the dry run (read above.)

	
class kingpin.actors.group.Async(*args, **kwargs)[source]

	Execute several kingpin.actors.base.BaseActor objects asynchronously.

Groups together a series of Actors and executes them asynchronously -
waiting until all of them finish before returning.

Options

	Concurrency:	Max number of concurrent executions. This will fire off N executions
in parallel, and continue with the remained as soon as the first
execution is done. This is faster than creating N Sync executions.

	Acts:	An array of individual Actor definitions.

	Contexts:	This variable can be one of two formats:

	A list of dictionaries with contextual tokens to pass into the actors
at instantiation time. If the list has more than one element, then
every actor defined in acts will be instantiated once for each item
in the contexts list.

	A dictionary of file and tokens. The file should be a relative
path with data formatted same as stated above. The tokens need to be
the same format as a Macro actor: a dictionary passing token data to be
used.

Timeouts

Timeouts are disabled specifically in this actor. The sub-actors can still
raise their own kingpin.actors.exceptions.ActorTimedOut exceptions, but
since the group actors run an arbitrary number of sub actors, we have
chosen to not have this actor specifically raise its own
kingpin.actors.exceptions.ActorTimedOut exception unless the user sets
the timeout setting.

Examples

Clone two arrays quickly.

{ "desc": "Clone two arrays",
 "actor": "group.Async",
 "options": {
 "contexts": [
 { "ARRAY": "NewArray1" },
 { "ARRAY": "NewArray2" }
],
 "acts": [
 { "desc": "do something",
 "actor": "server_array.Clone",
 "options": {
 "source": "template",
 "dest": "{ARRAY}",
 }
 }
]
 }
}

Dry Mode

Passes on the Dry mode setting to the sub-actors that are called.

Failure

In the event that one or more acts fail in this group, the entire group
acts will return a failure to Kingpin. Because multiple actors are
executing all at the same time, the all of these actors will be allowed to
finish before the failure is returned.

kingpin.actors.hipchat

The Hipchat Actors allow you to send messages to a HipChat room at stages
during your job execution. The actor supports dry mode by validating that the
configured API Token has access to execute the methods, without actually
sending the messages.

Required Environment Variables

	HIPCHAT_TOKEN:	HipChat API Token

	HIPCHAT_NAME:	HipChat message from name
(defaults to Kingpin)

	
class kingpin.actors.hipchat.HipchatBase(*args, **kwargs)[source]

	Simple Hipchat Abstract Base Object

	
class kingpin.actors.hipchat.Message(*args, **kwargs)[source]

	Sends a message to a room in HipChat.

Options

	Room:	(str) The string-name (or ID) of the room to send a message to

	Message:	(str) Message to send

Examples

{ "actor": "hipchat.Message",
 "desc": "Send a message!",
 "options": {
 "room": "Operations",
 "message": "Beginning Deploy: v1.2"
 }
}

Dry Mode

Fully supported – does not actually send messages to a room, but validates
that the API credentials would have access to send the message using the
HipChat auth_test optional API argument.

	
class kingpin.actors.hipchat.Topic(*args, **kwargs)[source]

	Sets a HipChat room topic.

Options

	room - The string-name (or ID) of the room to set the topic of

	topic - String of the topic to send

Examples

{ "actor": "hipchat.Topic",
 "desc": "set the room topic",
 "options": {
 "room": "Operations",
 "topic": "Latest Deployment: v1.2"
 }
}

Dry Mode

Fully supported – does not actually set a room topic, but validates
that the API credentials would have access to set the topic of the room
requested.

kingpin.actors.librato

The Librato Actor allows you to post an Annotation to Librato. This is
specifically useful for marking when deployments occur on your graphs for
cause/effect analysis.

Required Environment Variables

	LIBRATO_TOKEN:	Librato API Token

	LIBRATO_EMAIL:	Librato email account (i.e. username)

	
class kingpin.actors.librato.Annotation(*args, **kwargs)[source]

	Librato Annotation Actor

Posts an Annotation to Librato.

Options

	Title:	The title of the annotation

	Description:	The description of the annotation

	Name:	Name of the metric to annotate

Examples

{ "actor": "librato.Annotation",
 "desc": "Mark our deployment",
 "options": {
 "title": "Deploy",
 "description": "Version: 0001a",
 "name": "production_releases"
 }
}

Dry Mode

Currently does not actually do anything, just logs dry mode.

kingpin.actors.misc

These are common utility Actors that don’t really need their own
dedicated packages. Things like sleep timers, loggers, etc.

Optional Environment Variables

	URLLIB_DEBUG:	Set this variable to enable extreme debug logging of the URLLIB requests made
by the RightScale/AWS actors. Note, this is very insecure as
headers/cookies/etc. are exposed

	
class kingpin.actors.misc.Macro(*args, **kwargs)[source]

	Parses a kingpin script, instantiates and executes it.

Parse JSON/YAML

Kingpin JSON/YAML has 2 passes at its validity. Script syntax must be
valid, with the exception of a few useful deviations allowed by demjson [http://deron.meranda.us/python/demjson/] parser. Main
one being the permission of inline comments via /* this */ syntax.

The second pass is validating the Schema. The script will be validated
for schema-conformity as one of the first things that happens at load-time
when the app starts up. If it fails, you will be notified immediately.

Lastly after the JSON/YAML is established to be valid, all the tokens are
replaced with their specified value. Any key/value pair passed in the
tokens option will be available inside of the JSON file as %KEY%
and replaced with the value at this time.

In a situation where nested Macro executions are invoked the tokens do
not propagate from outter macro into the inner. This allows to reuse token
names, but forces the user to specify every token needed. Similarly, if
environment variables are used for token replacement in the main file,
these tokens are not available in the subsequent macros.

Pre-Instantiation

In an effort to prevent mid-run errors, we pre-instantiate all Actor
objects all at once before we ever begin executing code. This ensures that
major typos or misconfigurations in the JSON/YAML will be caught early on.

Execution

misc.Macro actor simply calls the execute() method of the most-outter
actor; be it a single action, or a group actor.

Options

	Macro:	String of local path to a JSON/YAML script.

	Tokens:	Dictionary to search/replace within the file.

Examples

{ "desc": "Stage 1",
 "actor": "misc.Macro",
 "options": {
 "macro": "deployment/stage-1.json",
 "tokens": {
 "TIMEOUT": 360,
 "RELEASE": "%RELEASE%"
 }
 }
}

Dry Mode

Fully supported – instantiates the actor inside of JSON with dry=True. The
behavior of the consecutive actor is unique to each; read their description
for more information on dry mode.

	
class kingpin.actors.misc.Sleep(desc=None, options={}, dry=False, warn_on_failure=False, condition=True, init_context={}, init_tokens={}, timeout=None)[source]

	Sleeps for an arbitrary number of seconds.

Options

	Sleep:	Integer of seconds to sleep.

Examples

{ "actor": "misc.Sleep",
 "desc": "Sleep for 60 seconds",
 "options": {
 "sleep": 60
 }
}

Dry Mode

Fully supported – does not actually sleep, just pretends to.

	
class kingpin.actors.misc.GenericHTTP(desc=None, options={}, dry=False, warn_on_failure=False, condition=True, init_context={}, init_tokens={}, timeout=None)[source]

	A very simple actor that allows GET/POST methods over HTTP.

Does a GET or a POST to a specified URL.

Options

	Url:	Destination URL

	Data:	Optional POST data as a dict [https://docs.python.org/2.7/library/stdtypes.html#dict]. Will convert into key=value&key2=value2..
Exclusive of data-json option.

	Data-json:	Optional POST data as a dict [https://docs.python.org/2.7/library/stdtypes.html#dict]. Will stringify and pass as JSON.
Exclusive of data option.

	Username:	Optional for HTTPAuth.

	Password:	Optional for HTTPAuth.

Examples

{ "actor": "misc.GenericHTTP",
 "desc": "Make a simple web call",
 "options": {
 "url": "http://example.com/rest/api/v1?id=123&action=doit",
 "username": "secret",
 "password": "%SECRET_PASSWORD%"
 }
}

Dry Mode

Will not do anything in dry mode except print a log statement.

kingpin.actors.packagecloud

The packagecloud actor allows you to perform maintenance operations on
repositories hosted by packagecloud.io using their API:

https://packagecloud.io/docs/api

Required Environment Variables

	PACKAGECLOUD_ACCOUNT:

		packagecloud account name, i.e. https://packagecloud.io/PACKAGECLOUD_ACCOUNT

	PACKAGECLOUD_TOKEN:

		packagecloud API Token

	
class kingpin.actors.packagecloud.PackagecloudBase(*args, **kwargs)[source]

	Simple packagecloud Abstract Base Object

	
class kingpin.actors.packagecloud.Delete(*args, **kwargs)[source]

	Deletes packages from a PackageCloud repo.

Searches for packages that match the packages_to_delete regex pattern and
deletes them. If number_to_keep is set, we always at least this number
of versions of the given package intact in the repo. Also if
number_to_keep is set, the older versions of a package (based on upload
time) packages will be deleted first effectively leaving newer packages
in the repo.

Options

	Number_to_keep:	Keep at least this number of each package
(defaults to 0)

	Packages_to_delete:

		Regex of packages to delete, e.g. pkg1|pkg2

	Repo:	Which packagecloud repo to delete from

Examples

{ "desc": "packagecloud Delete example",
 "actor": "packagecloud.Delete",
 "options": {
 "number_to_keep": 10,
 "packages_to_delete": "deleteme",
 "repo": "test"
 }
}

	
class kingpin.actors.packagecloud.DeleteByDate(*args, **kwargs)[source]

	Deletes packages from a PackageCloud repo older than X.

Adds additional functionality to the Delete class with a older_than
option. Only packages older than that number of seconds will be deleted.

Options

	Number_to_keep:	Keep at least this number of each package
(defaults to 0)

	Older_than:	Delete packages created before this number of seconds

	Packages_to_delete:

		Regex of packages to delete, e.g. pkg1|pkg2

	Repo:	Which packagecloud repo to delete from

Examples

{ "desc": "packagecloud DeleteByDate example",
 "actor": "packagecloud.DeleteByDate",
 "options": {
 "number_to_keep": 10,
 "older_than": 600,
 "packages_to_delete": "deleteme",
 "repo": "test"
 }
}

	
class kingpin.actors.packagecloud.WaitForPackage(*args, **kwargs)[source]

	Searches for a package that matches name and version until found or
a timeout occurs.

Options

	Name:	Name of the package to search for as a regex

	Version:	Version of the package to search for as a regex

	Repo:	Which packagecloud repo to delete from

	Sleep:	Number of seconds to sleep for between each search

Examples

{ "desc": "packagecloud WaitForPackage example",
 "actor": "packagecloud.WaitForPackage",
 "options": {
 "name": "findme",
 "version": "0.1",
 "repo": "test",
 "sleep": 10,
 }
}

kingpin.actors.pingdom

Pingdom actors to pause and unpause checks. These are useful when you are aware
of an expected downtime and don’t want to be alerted about it. Also known as
Maintenance mode.

Required Environment Variables

	PINGDOM_TOKEN:	Pingdom API Token

	PINGDOM_USER:	Pingdom Username (email)

	PINGDOM_PASS:	Pingdom Password

	
class kingpin.actors.pingdom.PingdomBase(*args, **kwargs)[source]

	Simple Pingdom Abstract Base Object

	
class kingpin.actors.pingdom.Pause(*args, **kwargs)[source]

	Start Pingdom Maintenance.

Pause a particular “check” on Pingdom.

Options

	Name:	(Str) Name of the check

Example

{ "actor": "pingdom.Pause",
 "desc": "Run Pause",
 "options": {
 "name": "fill-in"
 }
}

Dry run

Will assert that the check name exists, but not take any action on it.

	
class kingpin.actors.pingdom.Unpause(*args, **kwargs)[source]

	Stop Pingdom Maintenance.

Unpause a particular “check” on Pingdom.

Options

	Name:	(Str) Name of the check

Example

{ "actor": "pingdom.Unpause",
 "desc": "Run unpause",
 "options": {
 "name": "fill-in"
 }
}

Dry run

Will assert that the check name exists, but not take any action on it.

kingpin.actors.rightscale.api

Base RightScale API Access Object.

This package provides access to the RightScale API via Tornado-style
@gen.coroutine wrapped methods. These methods are, however, just wrappers
for threads that are being fired off in the background to make the API
calls.

Async vs Threads

In the future, this will get re-factored to use a native Tornado
AsyncHTTPClient object. The methods themselves will stay the same, but the
underlying private methods will change.

The methods in this object are specifically designed to support common
operations that the RightScale Actor objects need to do. Operations like
‘find server array’, ‘launch server array’, etc. This is not meant as a pure
one-to-one mapping of the RightScale API, but rather a mapping of conceptual
operations that the Actors need.

Method Design Note

RightScale mixes and matches their API calls... some of them you pass in a
major method and then supply a resource ID to act on. Others you pass in the
resource_id and get back a list of methods that you can execute.

For consistency in our programming model, this class relies o you passing in
rightscale.Resource objects everywhere, and it does the resource->ID
translation.

	
exception kingpin.actors.rightscale.api.ServerArrayException[source]

	Raised when an operation on or looking for a ServerArray fails

kingpin.actors.rightscale.base

The RightScale Actors allow you to interact with resources inside your
Rightscale account. These actors all support dry runs properly, but each
actor has its own caveats with dry=True. Please read the instructions
below for using each actor.

Required Environment Variables

	RIGHTSCALE_TOKEN:

		RightScale API Refresh Token
(from the Account Settings/API Credentials page)

	RIGHTSCALE_ENDPOINT:

		Your account-specific API Endpoint
(defaults to https://my.rightscale.com)

	
exception kingpin.actors.rightscale.base.ArrayNotFound[source]

	Raised when a ServerArray could not be found.

	
exception kingpin.actors.rightscale.base.ArrayAlreadyExists[source]

	Raised when a ServerArray already exists by a given name.

	
class kingpin.actors.rightscale.base.RightScaleBaseActor(*args, **kwargs)[source]

	Abstract class for creating RightScale cloud actors.

kingpin.actors.rightscale.server_array

	
exception kingpin.actors.rightscale.server_array.InvalidInputs[source]

	Raised when supplied inputs are invalid for a ServerArray.

	
exception kingpin.actors.rightscale.server_array.TaskExecutionFailed[source]

	Raised when one or more RightScale Task executions fail.

	
class kingpin.actors.rightscale.server_array.ServerArrayBaseActor(*args, **kwargs)[source]

	Abstract ServerArray Actor that provides some utility methods.

	
class kingpin.actors.rightscale.server_array.Clone(*args, **kwargs)[source]

	Clones a RightScale Server Array.

Clones a ServerArray in RightScale and renames it to the newly supplied
name. By default, this actor is extremely strict about validating that the
source array already exists, and that the dest array does not yet
exist. This behavior can be overridden though if your Kingpin script
creates the source, or destroys an existing dest ServerArray
sometime before this actor executes.

Options

	Source:	The name of the ServerArray to clone

	Strict_source:	Whether or not to fail if the source ServerArray does not exist.
(default: True)

	Dest:	The new name for your cloned ServerArray

	Strict_dest:	Whether or not to fail if the destination ServerArray already exists.
(default: True)

Examples

Clone my-template-array to my-new-array:

{ "desc": "Clone my array",
 "actor": "rightscale.server_array.Clone",
 "options": {
 "source": "my-template-array",
 "dest": "my-new-array"
 }
}

Clone an array that was created sometime earlier in the Kingpin JSON,
and thus does not exist yet during the dry run:

{ "desc": "Clone that array we created earlier",
 "actor": "rightscale.server_array.Clone",
 "options": {
 "source": "my-template-array",
 "strict_source": false,
 "dest": "my-new-array"
 }
}

Clone an array into a destination name that was destroyed sometime
earlier in the Kingpin JSON:

{ "desc": "Clone that array we created earlier",
 "actor": "rightscale.server_array.Clone",
 "options": {
 "source": "my-template-array",
 "dest": "my-new-array",
 "strict_dest": false,
 }
}

Dry Mode

In Dry mode this actor does validate that the source array exists. If
it does not, a kingpin.actors.rightscale.api.ServerArrayException is
thrown. Once that has been validated, the dry mode execution pretends to
copy the array by creating a mocked cloned array resource. This mocked
resource is then operated on during the rest of the execution of the actor,
guaranteeing that no live resources are modified.

Example dry output:

[Copy Test (DRY Mode)] Verifying that array "temp" exists
[Copy Test (DRY Mode)] Verifying that array "new" does not exist
[Copy Test (DRY Mode)] Cloning array "temp"
[Copy Test (DRY Mode)] Renaming array "<mocked clone of temp>" to "new"

	
class kingpin.actors.rightscale.server_array.Update(*args, **kwargs)[source]

	Update ServerArray Settings

Updates an existing ServerArray in RightScale with the supplied parameters.
Can update any parameter that is described in the RightScale API docs here:

Parameters are passed into the actor in the form of a dictionary, and are
then converted into the RightScale format. See below for examples.

Options

	Array:	(str) The name of the ServerArray to update

	Exact:	(bool) whether or not to search for the exact array name.
(default: true)

	Params:	(dict) Dictionary of parameters to update

	Inputs:	(dict) Dictionary of next-instance server arryay inputs to update

Examples

{ "desc": "Update my array",
 "actor": "rightscale.server_array.Update",
 "options": {
 "array": "my-new-array",
 "params": {
 "elasticity_params": {
 "bounds": {
 "min_count": 4
 },
 "schedule": [
 {"day": "Sunday", "max_count": 2,
 "min_count": 1, "time": "07:00" },
 {"day": "Sunday", "max_count": 2,
 "min_count": 2, "time": "09:00" }
]
 },
 "name": "my-really-new-name"
 }
 }
}

{ "desc": "Update my array inputs",
 "actor": "rightscale.server_array.Update",
 "options": {
 "array": "my-new-array",
 "inputs": {
 "ELB_NAME": "text:foobar"
 }
 }
}

Dry Mode

In Dry mode this actor does search for the array, but allows it to be
missing because its highly likely that the array does not exist yet. If the
array does not exist, a mocked array object is created for the rest of the
execution.

During the rest of the execution, the code bypasses making any real changes
and just tells you what changes it would have made.

This means that the dry mode cannot validate that the supplied inputs will
work.

Example dry output:

[Update Test (DRY Mode)] Verifying that array "new" exists
[Update Test (DRY Mode)] Array "new" not found -- creating a mock.
[Update Test (DRY Mode)] Would have updated "<mocked array new>" with
params: {'server_array[name]': 'my-really-new-name',
 'server_array[elasticity_params][bounds][min_count]': '4'}

	
class kingpin.actors.rightscale.server_array.UpdateNextInstance(*args, **kwargs)[source]

	Update the Next Instance parameters for a Server Array

Updates an existing ServerArray in RightScale with the supplied parameters.
Can update any parameter that is described in the RightScale
ResourceInstances [http://reference.rightscale.com/api1.5/resources/ResourceInstances.html#update] docs.

Note about the image_href parameter

If you pass in the string default to the image_href key in your
params dictionary, we will search and find the default image that your
ServerArray’s Multi Cloud Image refers to. This helper is useful if you
update your ServerArrays to use custom AMIs, and then occasionally want to
go back to using a stock AMI. For example, if you boot up your instances
occasionally off a stock AMI, customize the host, and then bake that host
into a custom AMI.

Parameters are passed into the actor in the form of a dictionary, and are
then converted into the RightScale format. See below for examples.

Options

	Array:	(str) The name of the ServerArray to update

	Exact:	(bool) whether or not to search for the exact array name.
(default: true)

	Params:	(dict) Dictionary of parameters to update

Examples

{ "desc": "Update my array",
 "actor": "rightscale.server_array.UpdateNextInstance",
 "options": {
 "array": "my-new-array",
 "params": {
 "associate_public_ip_address": true,
 "image_href": "/image/href/123",
 }
 }
}

{ "desc": "Reset the AMI image to the MCI default",
 "actor": "rightscale.server_array.UpdateNextInstance",
 "options": {
 "array": "my-new-array",
 "params": {
 "image_href": "default",
 }
 }
}

Dry Mode

In Dry mode this actor does search for the array, but allows it to be
missing because its highly likely that the array does not exist yet. If the
array does not exist, a mocked array object is created for the rest of the
execution.

During the rest of the execution, the code bypasses making any real changes
and just tells you what changes it would have made.

This means that the dry mode cannot validate that the supplied params will
work.

Example dry output:

[Update my array (DRY Mode)] Verifying that array "new" exists
[Update my array (DRY Mode)] Array "new" not found -- creating a mock.
[Update my array (DRY Mode)] Would have updated "<mocked array new>"
with params: {'server_array[associate_public_ip_address]': true,
 'server_array[image_href]': '/image/href/'}

	
class kingpin.actors.rightscale.server_array.Terminate(*args, **kwargs)[source]

	Terminate all instances in a ServerArray

Terminates all instances for a ServerArray in RightScale marking the array
disabled.

Options

	Array:	(str) The name of the ServerArray to destroy

	Exact:	(bool) Whether or not to search for the exact array name.
(default: true)

	Strict:	(bool) Whether or not to fail if the ServerArray does not exist.
(default: true)

Examples

 { "desc": "Terminate my array",
 "actor": "rightscale.server_array.Terminate",
 "options": {
 "array": "my-array"
 }
}

{ "desc": "Terminate many arrays",
 "actor": "rightscale.server_array.Terminate",
 "options": {
 "array": "array-prefix",
 "exact": false,
 }
}

Dry Mode

Dry mode still validates that the server array you want to terminate is
actually gone. If you want to bypass this check, then set the
warn_on_failure flag for the actor.

	
class kingpin.actors.rightscale.server_array.Destroy(*args, **kwargs)[source]

	Destroy a ServerArray in RightScale

Destroys a ServerArray in RightScale by first invoking the Terminate actor,
and then deleting the array as soon as all of the running instances have
been terminated.

Options

	Array:	(str) The name of the ServerArray to destroy

	Exact:	(bool) Whether or not to search for the exact array name.
(default: true)

	Strict:	(bool) Whether or not to fail if the ServerArray does not exist.
(default: true)

Examples

{ "desc": "Destroy my array",
 "actor": "rightscale.server_array.Destroy",
 "options": {
 "array": "my-array"
 }
}

{ "desc": "Destroy many arrays",
 "actor": "rightscale.server_array.Destroy",
 "options": {
 "array": "array-prefix",
 "exact": false,
 }
}

Dry Mode

In Dry mode this actor does search for the array [https://docs.python.org/2.7/library/array.html#module-array], but allows it to be
missing because its highly likely that the array does not exist yet. If the
array does not exist, a mocked array object is created for the rest of the
execution.

During the rest of the execution, the code bypasses making any real changes
and just tells you what changes it would have made.

Example dry output:

[Destroy Test (DRY Mode)] Beginning
[Destroy Test (DRY Mode)] Terminating array before destroying it.
[Destroy Test (terminate) (DRY Mode)] Array "my-array" not found --
creating a mock.
[Destroy Test (terminate) (DRY Mode)] Disabling Array "my-array"
[Destroy Test (terminate) (DRY Mode)] Would have terminated all array
"<mocked array my-array>" instances.
[Destroy Test (terminate) (DRY Mode)] Pretending that array <mocked
array my-array> instances are terminated.
[Destroy Test (DRY Mode)] Pretending to destroy array "<mocked array
my-array>"
[Destroy Test (DRY Mode)] Finished successfully. Result: True

	
class kingpin.actors.rightscale.server_array.Launch(*args, **kwargs)[source]

	Launch instances in a ServerArray

Launches instances in an existing ServerArray and waits until that array
has become healthy before returning. Healthy means that the array has at
least the user-specified count or min_count number of instances
running as defined by the array definition in RightScale.

Options

	Array:	(str) The name of the ServerArray to launch

	Count:	(str, int) Optional number of instance to launch. Defaults to min_count
of the array.

	Enable:	(bool) Should the autoscaling of the array be enabled? Settings this to
false, or omitting the parameter will not disable an enabled array.

	Exact:	(bool) Whether or not to search for the exact array name.
(default: true)

Examples

{ "desc": "Enable array and launch it",
 "actor": "rightscale.server_array.Launch",
 "options": {
 "array": "my-array",
 "enable": true
 }
}

{ "desc": "Enable arrays starting with my-array and launch them",
 "actor": "rightscale.server_array.Launch",
 "options": {
 "array": "my-array",
 "enable": true,
 "exact": false
 }
}

{ "desc": "Enable array and launch 1 instance",
 "actor": "rightscale.server_array.Launch",
 "options": {
 "array": "my-array",
 "count": 1
 }
}

Dry Mode

In Dry mode this actor does search for the array, but allows it to be
missing because its highly likely that the array does not exist yet. If the
array does not exist, a mocked array object is created for the rest of the
execution.

During the rest of the execution, the code bypasses making any real changes
and just tells you what changes it would have made.

Example dry output:

[Launch Array Test #0 (DRY Mode)] Verifying that array "my-array" exists
[Launch Array Test #0 (DRY Mode)] Array "my-array" not found -- creating
 a mock.
[Launch Array Test #0 (DRY Mode)] Enabling Array "my-array"
[Launch Array Test #0 (DRY Mode)] Launching Array "my-array" instances
[Launch Array Test #0 (DRY Mode)] Would have launched instances of array
 <MagicMock name='my-array.self.show().soul.__getitem__()'
 id='4420453200'>
[Launch Array Test #0 (DRY Mode)] Pretending that array <MagicMock
 name='my-array.self.show().soul.__getitem__()' id='4420453200'>
 instances are launched.

	
class kingpin.actors.rightscale.server_array.Execute(*args, **kwargs)[source]

	Executes a RightScale script/recipe on a ServerArray

Executes a RightScript or Recipe on a set of hosts in a ServerArray in
RightScale using individual calls to the live running instances. These can
be found in your RightScale account under Design -> RightScript or
Design -> Cookbooks

The RightScale API offers a multi_run_executable method that can be used
to run a single script on all servers in an array – but unfortunately this
API method provides no way to monitor the progress of the individual jobs
on the hosts. Furthermore, the method often executes on recently terminated
or terminating hosts, which throws false-negative error results.

Our actor explicitly retrieves a list of the operational hosts in an
array and kicks off individual execution tasks for every host. It then
tracks the execution of those tasks from start to finish and returns the
results.

Options

	Array:	(str) The name of the ServerArray to operate on

	Script:	(str) The name of the RightScript or Recipe to execute

	Expected_runtime:

		(str, int) Expected number of seconds to execute.
(default: 5)

	Concurrency:	Max number of concurrent executions. This will fire off N executions
in parallel, and continue with the remained as soon as the first
execution is done. This is faster than creating N Sync executions.
Note: When applied to multiple (M) arrays cumulative concurrency
accross all arrays will remain at N. It will not be M x N.

	Inputs:	(dict) Dictionary of Key/Value pairs to use as inputs for the script

	Exact:	(str) Boolean whether or not to search for the exact array name.
(default: true)

Examples

{ "desc":" Execute script on my-array",
 "actor": "rightscale.server_array.Execute",
 "options": {
 "array": "my-array",
 "script": "connect to elb",
 "expected_runtime": 3,
 "inputs": {
 "ELB_NAME": "text:my-elb"
 }
 }
}

Dry Mode

In Dry mode this actor does search for the array [https://docs.python.org/2.7/library/array.html#module-array], but allows it to be
missing because its highly likely that the array does not exist yet. If the
array does not exist, a mocked array object is created for the rest of the
execution.

During the rest of the execution, the code bypasses making any real changes
and just tells you what changes it would have made.

Example dry output:

[Destroy Test (DRY Mode)] Verifying that array "my-array" exists
[Execute Test (DRY Mode)]
 kingpin.actors.rightscale.server_array.Execute Initialized
[Execute Test (DRY Mode)] Beginning execution
[Execute Test (DRY Mode)] Verifying that array "my-array" exists
[Execute Test (DRY Mode)] Would have executed "Connect instance to ELB"
 with inputs "{'inputs[ELB_NAME]': 'text:my-elb'}" on "my-array".
[Execute Test (DRY Mode)] Returning result: True

kingpin.actors.rollbar

The Rollbar Actor allows you to post Deploy messages to Rollbar when you
execute a code deployment.

Required Environment Variables

	ROLLBAR_TOKEN:	Rollbar API Token

	
class kingpin.actors.rollbar.RollbarBase(*args, **kwargs)[source]

	Simple Rollbar Base Abstract Actor

	
class kingpin.actors.rollbar.Deploy(*args, **kwargs)[source]

	Posts a Deploy message to Rollbar.

https://rollbar.com/docs/deploys_other/

API Token

You must use an API token created in your Project Access Tokens account
settings section. This token should have post_server_item permissions for
the actual deploy, and read permissions for the Dry run.

Options

	Environment:	The environment to deploy to

	Revision:	The deployment revision

	Local_username:	The user who initiated the deploy

	Rollbar_username:

		(Optional) The Rollbar Username to assign the deploy to

	Comment:	(Optional) Comment describing the deploy

Examples

{ "actor": "rollbar.Deploy",
 "desc": "update rollbar deploy",
 "options": {
 "environment": "Prod",
 "revision": "%DEPLOY%",
 "local_username": "Kingpin",
 "rollbar_username": "Kingpin",
 "comment": "some comment %DEPLOY%"
 }
}

Dry Mode

Accesses the Rollbar API and validates that the token can access your
project.

kingpin.actors.slack

The Slack Actors allow you to send messages to a Slack channel at stages during
your job execution. The actor supports dry mode by validating that the
configured API Token has access to execute the methods, without actually
sending the messages.

Required Environment Variables

	SLACK_TOKEN:	Slack API Token

	SLACK_NAME:	Slack message from name
(defaults to Kingpin)

	
class kingpin.actors.slack.SlackBase(*args, **kwargs)[source]

	Simple Slack Abstract Base Object

	
class kingpin.actors.slack.Message(*args, **kwargs)[source]

	Sends a message to a channel in Slack.

Options

	Channel:	The string-name of the channel to send a message to, or a list of
channels

	Message:	String of the message to send

Examples

{ "desc": "Let the Engineers know things are happening",
 "actor": "slack.Message",
 "options": {
 "channel": "#operations",
 "message": "Beginning Deploy: %VER%"
 }
}

Dry Mode

Fully supported – does not actually send messages to a room, but validates
that the API credentials would have access to send the message using the
Slack auth.test API method.

This package provides a quick way of creating custom API clients for JSON-based
REST APIs. The majority of the work is in the creation of a _CONFIG dictionary
for the class. This dictionary dynamically configures the object at
instantiation time with the appropriate @gen.coroutine wrapped HTTP fetch
methods.

See the documentation in docs/DEVELOPMENT.md for more details on how to use
this package to create your own API client.

	
kingpin.actors.support.api.create_http_method(name, http_method)[source]

	Creates the get/put/delete/post coroutined-method for a resource.

This method is called during the __init__ of a RestConsumer object. The
method creates a custom method thats handles a GET, PUT, POST or DELETE
through the Tornado HTTPClient class.

	Args:

	http_method: Name of the method (get, put, post, delete)

	Returns:

	A method appropriately configured and named.

	
kingpin.actors.support.api.create_method(name, config)[source]

	Creates a RestConsumer object.

Configures a fresh RestConsumer object with the supplied configuration
bits. The configuration includes information about the name of the method
being consumed and the configuration of that method (which HTTP methods it
supports, etc).

The final created method accepts any args (*args, **kwargs) and passes
them on to the RestConsumer object being created. This allows for passing
in unique resource identifiers (ie, the ‘%res%’ in
‘/v2/rooms/%res%/history’).

	Args:

	name: The name passed into the RestConsumer object
config: The config passed into the RestConsumer object

	Returns:

	A method that returns a fresh RestConsumer object

	
class kingpin.actors.support.api.RestConsumer(name=None, config=None, client=None, *args, **kwargs)[source]

	An abstract object that self-defines its own API access methods.

At init time, this object reads its _CONFIG and pre-defines all of the
API access methods that have been described. It does not handle actual HTTP
calls directly, but is passed in a client object (anything that
subclasses the RestClient class) and leverages that for the actual web
calls.

	
class kingpin.actors.support.api.RestClient(client=None, headers=None)[source]

	Very simple REST client for the RestConsumer. Implements a
AsyncHTTPClient(), some convinience methods for URL escaping, and a single
fetch() method that can handle GET/POST/PUT/DELETEs.

This code is nearly identical to the kingpin.actors.base.BaseHTTPActor
class, but is not actor-specific.

	Args:

	headers: Headers to pass in on every HTTP request

	
class kingpin.actors.support.api.SimpleTokenRestClient(tokens, *args, **kwargs)[source]

	Simple RestClient that appends a ‘token’ to every web request for
authentication. Used in most simple APIs where a token is provided to the
end user.

	Args:

	
	tokens: (dict) A dict with the token name/value(s) to append to every

	we request.

kingpin.actors.utils

Misc methods for dealing with Actors.

	
kingpin.actors.utils.dry(dry_message)[source]

	Coroutine-compatible decorator to dry-run a method.

Note: this must act on a BaseActor object.

Example usage as decorator:

>>> @gen.coroutine
... @dry('Would have done that {thing}')
... def do_thing(self, thing):
... yield api.do_thing(thing)
...
>>> yield do_thing(thing="yeah man, that thing")

	Args:

	dry_message: The message to print out instead of doing the actual
function call. This string is passed through format(kwargs), so any
variables you’d like can be substituted as long as they’re passed to
the method being wrapped.

	
kingpin.actors.utils.timer(f)[source]

	Coroutine-compatible function timer.

Records statistics about how long a given function took, and logs them
out in debug statements. Used primarily for tracking Actor execute()
methods, but can be used elsewhere as well.

Note: this must act on a BaseActor object.

	Example usage:

	>>> @gen.coroutine
... @timer()
... def execute(self):
... raise gen.Return()

	
kingpin.actors.utils.get_actor(config, dry)[source]

	Returns an initialized Actor object.

	Args:

	
	config: A dictionary of configuration data that conforms to our v1

	schema in kingpin.schema. Looks like this:

	{

	‘desc’: <string description of actor>,
‘actor’: <string name of actor>
‘options’: <dict of options to pass to actor>
‘warn_on_failure’: <bool>
‘condition’: <string or bool>
}

dry: Boolean whether or not in Dry mode
warn_on_failure: Boolean

	Returns:

	<actor object>

	
kingpin.actors.utils.get_actor_class(actor)[source]

	Returns a Class Reference to an Actor by string name.

	Args:

	actor: String name of the actor to find.

	Returns:

	<Class Ref to Actor>

	
class kingpin.constants.REQUIRED[source]

	Meta class to identify required arguments for actors.

	
class kingpin.constants.StringCompareBase[source]

	Meta class to identify the desired state for a resource.

This basic type of constant allows someone to easily define a set of valid
strings for their option and have the base actor class automatically
validate the inputs against those strings.

	
class kingpin.constants.STATE[source]

	Meta class to identify the desired state for a resource.

Simple tester for ‘present’ or ‘absent’ on actors. Used for any actor thats
idempotent and used to ensure some state of a resource.

	
class kingpin.constants.SchemaCompareBase[source]

	Meta class that compares the schema of a dict against rules.

	
exception kingpin.exceptions.KingpinException[source]

	Base Exception

	
exception kingpin.exceptions.InvalidScript[source]

	Raised when an invalid script schema was detected

	
exception kingpin.exceptions.InvalidScriptName[source]

	Raised when the script name does not end on .yaml or .json

	
kingpin.schema.validate(config)[source]

	Validates the JSON against our schemas.

TODO: Support multiple schema versions

	Args:

	config: Dictionary of parsed JSON

	Returns:

	None: if all is well

	Raises:

	Execption if something went wrong.

kingpin.utils

Common package for utility functions.

	
kingpin.utils.str_to_class(string)[source]

	Method that converts a string name into a usable Class name

This is used to take the ‘actor’ value from the JSON object and convert it
into a valid object reference.

	Args:

	
	cls: String name of the wanted class and package.

	eg: kingpin.actors.foo.bar
eg: misc.Sleep
eg: actors.misc.Sleep
eg: my.private.Actor

	Returns:

	A reference to the actual Class to be instantiated

	
kingpin.utils.setup_root_logger(level='warn', syslog=None, color=False)[source]

	Configures the root logger.

	Args:

	level: Logging level string (‘warn’ is default)
syslog: String representing syslog facility to output to. If empty,
logs are written to console.
color: Colorize the log output

	Returns:

	A root Logger object

	
kingpin.utils.super_httplib_debug_logging()[source]

	Enables DEBUG logging deep in HTTPLIB.

HTTPLib by default doens’t log out things like the raw HTTP headers,
cookies, response body, etc – even when your main logger is in DEBUG mode.
This is because its a security risk, as well as just highly verbose.

For the purposes of debugging though, this can be useful. This method
enables deep debug logging of the HTTPLib web requests. This is highly
insecure, but very useful when troubleshooting failures with remote API
endpoints.

	Returns:

	Requests ‘logger’ object (mainly for unit testing)

	
kingpin.utils.exception_logger(func)[source]

	Explicitly log Exceptions then Raise them.

Logging Exceptions and Tracebacks while inside of a thread is broken in the
Tornado futures package for Python 2.7. It swallows most of the traceback
and only gives you the raw exception object. This little helper method
allows us to throw a log entry with the full traceback before raising the
exception.

	
kingpin.utils.retry(excs, retries=3, delay=0.25)[source]

	Coroutine-compatible Retry Decorator.

This decorator provides a simple retry mechanism that looks for a
particular set of exceptions and retries async tasks in the event that
those exceptions were caught.

	Example usage:

	>>> @gen.coroutine
... @retry(excs=(Exception), retries=3)
... def login(self):
... raise gen.Return()

	Args:

	excs: A single (or tuple) exception type to catch.
retries: The number of times to try the operation in total.
delay: Time (in seconds) to wait between retries

	
kingpin.utils.tornado_sleep(*args, **kwargs)[source]

	Async method equivalent to sleeping.

	Args:

	seconds: Float seconds. Default 1.0

	
kingpin.utils.populate_with_tokens(string, tokens, left_wrapper='%', right_wrapper='%', strict=True)[source]

	Insert token variables into the string.

Will match any token wrapped in ‘%’s and replace it with the value of that
token.

	Args:

	string: string to modify.
tokens: dictionary of key:value pairs to inject into the string.
left_wrapper: the character to use as the START of a token
right_wrapper: the character to use as the END of a token
strict: (bool) whether or not to make sure all tokens were replaced

	Example:

	export ME=biz

string=’foo %ME% %bar%’
populate_with_tokens(string, os.environ) # ‘foo biz %bar%’

	
kingpin.utils.convert_script_to_dict(script_file, tokens)[source]

	Converts a JSON file to a config dict.

Reads in a JSON file, swaps out any environment variables that
have been used inside the JSON, and then returns a dictionary.

	Args:

	script_file: Path to the JSON/YAML file to import, or file instance.
tokens: dictionary to pass to populate_with_tokens.

	Returns:

	<Dictonary of Config Data>

	Raises:

	kingpin.exceptions.InvalidScript

	
kingpin.utils.order_dict(obj)[source]

	Re-orders a dict into a predictable pattern.

Used so that you can compare two dicts with the same values, but that were
created in different orders.

	Stolen from:

	http://stackoverflow.com/questions/25851183/how-to-compare-two-json-
objects-with-the-same-elements-in-a-different-order-equa

	args:

	obj: Object to order

	returns:

	obj: A sorted version of the object

	
kingpin.utils.create_repeating_log(logger, message, handle=None, **kwargs)[source]

	Create a repeating log message.

This function sets up tornado to repeatedly log a message in a way that
does not need to be yield-ed.

Example:

>>> yield do_tornado_stuff(1)
>>> log_handle = create_repeating_log('Computing...')
>>> yield do_slow_computation_with_insufficient_logging()
>>> clear_repeating_log(log_handle)

This is similar to javascript’s setInterval() and clearInterval().

	Args:

	message: String to pass to log.info()
kwargs: values accepted by datetime.timedelta namely seconds, and
milliseconds.

Must be cleared via clear_repeating_log()
Only handles one interval per actor.

	
kingpin.utils.clear_repeating_log(handle)[source]

	Stops the timeout function from being called.

 Copyright 2015, Nextdoor.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 modules |

 	Kingpin 0.4.0 documentation

 Python Module Index

 a |
 b |
 c |
 e |
 g |
 h |
 l |
 m |
 p |
 r |
 s |
 u |
 v

 			

 		
 a	

 	[image: -]
 	
 kingpin.actors.aws	

 	
 	
 kingpin.actors.aws.base	

 	
 	
 kingpin.actors.aws.cloudformation	

 	
 	
 kingpin.actors.aws.elb	

 	
 	
 kingpin.actors.aws.iam	

 	
 	
 kingpin.actors.aws.s3	

 	
 	
 kingpin.actors.aws.settings	

 	
 	
 kingpin.actors.aws.sqs	

 			

 		
 b	

 	
 	
 kingpin.actors.base	

 			

 		
 c	

 	
 	
 kingpin.constants	

 			

 		
 e	

 	
 	
 kingpin.actors.exceptions	

 	
 	
 kingpin.exceptions	

 			

 		
 g	

 	
 	
 kingpin.actors.group	

 			

 		
 h	

 	
 	
 kingpin.actors.hipchat	

 			

 		
 l	

 	
 	
 kingpin.actors.librato	

 			

 		
 m	

 	
 	
 kingpin.actors.misc	

 			

 		
 p	

 	
 	
 kingpin.actors.packagecloud	

 	
 	
 kingpin.actors.pingdom	

 			

 		
 r	

 	[image: -]
 	
 kingpin.actors.rightscale	

 	
 	
 kingpin.actors.rightscale.api	

 	
 	
 kingpin.actors.rightscale.base	

 	
 	
 kingpin.actors.rightscale.server_array	

 	
 	
 kingpin.actors.rollbar	

 			

 		
 s	

 	
 	
 kingpin.actors.slack	

 	[image: -]
 	
 kingpin.actors.support	

 	
 	
 kingpin.actors.support.api	

 	
 	
 kingpin.schema	

 			

 		
 u	

 	
 	
 kingpin.actors.utils	

 	
 	
 kingpin.utils	

 			

 		
 v	

 	
 	
 kingpin.version	

 Copyright 2015, Nextdoor.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 modules |

 	Kingpin 0.4.0 documentation

Index

 A
 | B
 | C
 | D
 | E
 | G
 | H
 | I
 | K
 | L
 | M
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

A

 	

 	ActorException

 	ActorTimedOut

 	Annotation (class in kingpin.actors.librato)

 	

 	ArrayAlreadyExists

 	ArrayNotFound

 	Async (class in kingpin.actors.group)

B

 	

 	BadRequest

 	BaseActor (class in kingpin.actors.base)

 	

 	BaseGroupActor (class in kingpin.actors.group)

 	Bucket (class in kingpin.actors.aws.s3)

C

 	

 	CertNotFound

 	clear_repeating_log() (in module kingpin.utils)

 	Clone (class in kingpin.actors.rightscale.server_array)

 	CloudFormationBaseActor (class in kingpin.actors.aws.cloudformation)

 	CloudFormationError

 	

 	convert_script_to_dict() (in module kingpin.utils)

 	Create (class in kingpin.actors.aws.cloudformation)

 	

 	(class in kingpin.actors.aws.sqs)

 	create_http_method() (in module kingpin.actors.support.api)

 	create_method() (in module kingpin.actors.support.api)

 	create_repeating_log() (in module kingpin.utils)

D

 	

 	Delete (class in kingpin.actors.aws.cloudformation)

 	

 	(class in kingpin.actors.aws.sqs)

 	(class in kingpin.actors.packagecloud)

 	DeleteByDate (class in kingpin.actors.packagecloud)

 	Deploy (class in kingpin.actors.rollbar)

 	

 	DeregisterInstance (class in kingpin.actors.aws.elb)

 	Destroy (class in kingpin.actors.rightscale.server_array)

 	dry() (in module kingpin.actors.utils)

E

 	

 	ELBBaseActor (class in kingpin.actors.aws.elb)

 	ELBNotFound

 	

 	exception_logger() (in module kingpin.utils)

 	Execute (class in kingpin.actors.rightscale.server_array)

G

 	

 	GenericHTTP (class in kingpin.actors.misc)

 	get_actor() (in module kingpin.actors.utils)

 	

 	get_actor_class() (in module kingpin.actors.utils)

H

 	

 	HipchatBase (class in kingpin.actors.hipchat)

 	

 	HTTPBaseActor (class in kingpin.actors.base)

I

 	

 	InvalidActor

 	InvalidBucketConfig

 	InvalidCredentials

 	InvalidInputs

 	InvalidMetaData

 	InvalidOptions

 	

 	InvalidPolicy

 	InvalidScript

 	InvalidScriptName

 	InvalidTemplate

 	is_retriable_exception() (in module kingpin.actors.aws.settings)

K

 	

 	kingpin.actors.aws.base (module)

 	kingpin.actors.aws.cloudformation (module)

 	kingpin.actors.aws.elb (module)

 	kingpin.actors.aws.iam (module)

 	kingpin.actors.aws.s3 (module)

 	kingpin.actors.aws.settings (module)

 	kingpin.actors.aws.sqs (module)

 	kingpin.actors.base (module)

 	kingpin.actors.exceptions (module)

 	kingpin.actors.group (module)

 	kingpin.actors.hipchat (module)

 	kingpin.actors.librato (module)

 	kingpin.actors.misc (module)

 	kingpin.actors.packagecloud (module)

 	

 	kingpin.actors.pingdom (module)

 	kingpin.actors.rightscale.api (module)

 	kingpin.actors.rightscale.base (module)

 	kingpin.actors.rightscale.server_array (module)

 	kingpin.actors.rollbar (module)

 	kingpin.actors.slack (module)

 	kingpin.actors.support.api (module)

 	kingpin.actors.utils (module)

 	kingpin.constants (module)

 	kingpin.exceptions (module)

 	kingpin.schema (module)

 	kingpin.utils (module)

 	kingpin.version (module)

 	KingpinException

L

 	

 	Launch (class in kingpin.actors.rightscale.server_array)

 	LifecycleConfig (class in kingpin.actors.aws.s3)

 	

 	LogAdapter (class in kingpin.actors.base)

 	LoggingConfig (class in kingpin.actors.aws.s3)

M

 	

 	Macro (class in kingpin.actors.misc)

 	

 	Message (class in kingpin.actors.hipchat)

 	

 	(class in kingpin.actors.slack)

O

 	

 	option() (kingpin.actors.base.BaseActor method)

 	

 	order_dict() (in module kingpin.utils)

P

 	

 	p2f() (in module kingpin.actors.aws.elb)

 	PackagecloudBase (class in kingpin.actors.packagecloud)

 	Pause (class in kingpin.actors.pingdom)

 	

 	PingdomBase (class in kingpin.actors.pingdom)

 	populate_with_tokens() (in module kingpin.utils)

Q

 	

 	QueueDeletionFailed

 	

 	QueueNotFound

R

 	

 	readfile() (kingpin.actors.base.BaseActor method)

 	RecoverableActorFailure

 	RegisterInstance (class in kingpin.actors.aws.elb)

 	REQUIRED (class in kingpin.constants)

 	RestClient (class in kingpin.actors.support.api)

 	

 	RestConsumer (class in kingpin.actors.support.api)

 	retry() (in module kingpin.utils)

 	RightScaleBaseActor (class in kingpin.actors.rightscale.base)

 	RollbarBase (class in kingpin.actors.rollbar)

S

 	

 	S3BaseActor (class in kingpin.actors.aws.s3)

 	SchemaCompareBase (class in kingpin.constants)

 	ServerArrayBaseActor (class in kingpin.actors.rightscale.server_array)

 	ServerArrayException

 	SetCert (class in kingpin.actors.aws.elb)

 	setup_root_logger() (in module kingpin.utils)

 	SimpleTokenRestClient (class in kingpin.actors.support.api)

 	SlackBase (class in kingpin.actors.slack)

 	Sleep (class in kingpin.actors.misc)

 	

 	StackAlreadyExists

 	StackNotFound

 	STATE (class in kingpin.constants)

 	str2bool() (kingpin.actors.base.BaseActor method)

 	str_to_class() (in module kingpin.utils)

 	StringCompareBase (class in kingpin.constants)

 	super_httplib_debug_logging() (in module kingpin.utils)

 	Sync (class in kingpin.actors.group)

T

 	

 	TaskExecutionFailed

 	Terminate (class in kingpin.actors.rightscale.server_array)

 	timeout() (kingpin.actors.base.BaseActor method)

 	

 	timer() (in module kingpin.actors.utils)

 	Topic (class in kingpin.actors.hipchat)

 	tornado_sleep() (in module kingpin.utils)

U

 	

 	UnparseableResponseFromEndpoint

 	Unpause (class in kingpin.actors.pingdom)

 	UnrecoverableActorFailure

 	

 	Update (class in kingpin.actors.rightscale.server_array)

 	UpdateNextInstance (class in kingpin.actors.rightscale.server_array)

V

 	

 	validate() (in module kingpin.schema)

W

 	

 	WaitForPackage (class in kingpin.actors.packagecloud)

 	WaitUntilEmpty (class in kingpin.actors.aws.sqs)

 	

 	WaitUntilHealthy (class in kingpin.actors.aws.elb)

 Copyright 2015, Nextdoor.
 Created using Sphinx 1.4.

 _modules/kingpin/actors/aws/sqs.html

 Navigation

 		
 index

 		
 modules |

 		Kingpin 0.4.0 documentation »

 		Module code »

 Source code for kingpin.actors.aws.sqs

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#
Copyright 2014 Nextdoor.com, Inc

"""
:mod:`kingpin.actors.aws.sqs`
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
"""

import logging
import re

from tornado import concurrent
from tornado import gen
from tornado import ioloop
import boto.sqs.connection
import boto.sqs.queue
import mock

from kingpin import utils
from kingpin.actors import exceptions
from kingpin.actors.aws import base
from kingpin.actors.aws import settings as aws_settings
from kingpin.actors.utils import dry
from kingpin.constants import REQUIRED

log = logging.getLogger(__name__)

__author__ = 'Mikhail Simin <mikhail@nextdoor.com>'

This executor is used by the tornado.concurrent.run_on_executor()
decorator. We would like this to be a class variable so its shared
across RightScale objects, but we see testing IO errors when we
do this.
EXECUTOR = concurrent.futures.ThreadPoolExecutor(10)

[docs]class QueueNotFound(exceptions.RecoverableActorFailure):

 """Raised by SQS Actor when a needed queue is not found."""

[docs]class QueueDeletionFailed(exceptions.RecoverableActorFailure):

 """Raised if Boto fails to delete an SQS queue.

 http://boto.readthedocs.org/en/latest/ref/
 sqs.html#boto.sqs.connection.SQSConnection.delete_queue
 """

class SQSBaseActor(base.AWSBaseActor):

 # This actor should not be instantiated, but unit testing requires that
 # it's all options are defined properly here.
 all_options = {
 'name': (str, REQUIRED, 'Queue name to do nothing with.'),
 'region': (str, REQUIRED, 'AWS region (or zone) name like us-west-2')
 }

 # Get references to existing objects that are used by the
 # tornado.concurrent.run_on_executor() decorator.
 ioloop = ioloop.IOLoop.current()
 executor = EXECUTOR

 @gen.coroutine
 def _fetch_queues(self, pattern):
 """Searches SQS for all queues with a matching name pattern.

 Args:
 pattern: string - regex used in `re.match()`

 Returns:
 Array of matched queues, even if empty.
 """
 queues = yield self.thread(self.sqs_conn.get_all_queues)
 match_queues = [q for q in queues if re.search(pattern, q.name)]
 raise gen.Return(match_queues)

[docs]class Create(SQSBaseActor):

 """Creates a new SQS queue with the specified name

 Options

 :name:
 (str) The name of the queue to create

 :region:
 (str) AWS region (or zone) string, like 'us-west-2'

 Examples

 .. code-block:: json

 { "actor": "aws.sqs.Create",
 "desc": "Create queue named async-tasks",
 "options": {
 "name": "async-tasks",
 "region": "us-east-1",
 }
 }

 Dry Mode

 Will not create any queue, or even contact SQS. Will create a mock.Mock
 object and exit with success.
 """

 all_options = {
 'name': (str, REQUIRED, 'Name or pattern for SQS queues.'),
 'region': (str, REQUIRED, 'AWS region (or zone), such as us-west-2')
 }

 @gen.coroutine
 def _create_queue(self, name):
 """Create an SQS queue with the specified name.

 Returns either the real boto.sqs.queue.Queue object or the Mock object
 in dry run.

 Args:
 name: Queue name (string) to create.

 Returns:
 An SQS Queue Object
 """
 if not self._dry:
 self.log.info('Creating a new queue: %s' % name)
 new_queue = yield self.thread(self.sqs_conn.create_queue, name)
 else:
 self.log.info('Would create a new queue: %s' % name)
 new_queue = mock.Mock(name=name)

 self.log.debug('Returning queue object: %s' % new_queue)
 raise gen.Return(new_queue)

 @gen.coroutine
 def _execute(self):
 """Executes an actor and yields the results when its finished.

 Raises:
 gen.Return()
 """
 q = yield self._create_queue(name=self.option('name'))

 if q.__class__ == boto.sqs.queue.Queue:
 self.log.info('Queue Created: %s' % q.url)
 elif self._dry:
 self.log.info('Fake Queue: %s' % q)
 else:
 raise exceptions.UnrecoverableActorFailure(
 'All hell broke loose: %s' % q)

 raise gen.Return()

[docs]class Delete(SQSBaseActor):

 """Deletes the SQS queues

 Note: **even if it`s not empty**

 Options

 :name:
 (str) The name of the queue to destroy

 :region:
 (str) AWS region (or zone) string, like 'us-west-2'

 :idempotent:
 (bool) Will not raise errors if no matching queues are found.
 (default: False)

 Examples

 .. code-block:: json

 { "actor": "aws.sqs.Delete",
 "desc": "Delete queue async-tasks",
 "options": {
 "name": "async-tasks",
 "region": "us-east-1"
 }
 }

 .. code-block:: json

 { "actor": "aws.sqs.Delete",
 "desc": "Delete queues with 1234 in the name",
 "options": {
 "name": "1234",
 "region": "us-east-1"
 }
 }

 Dry Mode

 Will find the specified queue, but will have a noop regarding its deletion.
 Dry mode will fail if no queues are found, and idempotent flag is set to
 False.
 """

 all_options = {
 'name': (str, REQUIRED, 'Name or pattern for SQS queues.'),
 'region': (str, REQUIRED, 'AWS region (or zone), such as us-west-2'),
 'idempotent': (bool, False, 'Continue if queues are already deleted.')
 }

 @gen.coroutine
 @dry('Would delete the queue: {queue}')
 def _delete_queue(self, queue):
 """Delete the provided queue.

 Raises RecoverableActorFailure if fail to delete it.

 Returns:
 True if successful in deletion, or is Dry run.

 Raises:
 QueueDeletionFailed if queue deletion failed.
 """
 self.log.info('Deleting Queue: %s...' % queue.url)
 ok = yield self.thread(self.sqs_conn.delete_queue, queue)

 # Raise an exception if the tasks failed
 if not ok:
 raise QueueDeletionFailed('Failed to delete "%s"' % queue.url)

 raise gen.Return(ok)

 @gen.coroutine
 @utils.retry(QueueNotFound, delay=aws_settings.SQS_RETRY_DELAY)
 def _execute(self):
 """Executes an actor and yields the results when its finished.

 Raises:
 gen.Return()
 QueueNotFound()
 """
 pattern = self.option('name')
 matched_queues = yield self._fetch_queues(pattern=pattern)

 not_found_condition = (not matched_queues and
 not self.option('idempotent'))

 if not_found_condition:
 raise QueueNotFound(
 'No queues with pattern "%s" found.' % pattern)

 self.log.info('Deleting SQS Queues: %s' % matched_queues)

 tasks = []
 for q in matched_queues:
 tasks.append(self._delete_queue(queue=q))
 yield tasks

 raise gen.Return()

[docs]class WaitUntilEmpty(SQSBaseActor):

 """Wait indefinitely until for SQS queues to become empty

 This actor will loop infinitely as long as the count of messages in at
 least one queue is greater than zero. SQS does not guarantee exact count,
 so this can return a stale value if the number of messages in the queue
 changes rapidly.

 Options

 :name:
 (str) The name or regex pattern of the queues to operate on

 :region:
 (str) AWS region (or zone) string, like 'us-west-2'

 :required:
 (bool) Fail if no matching queues are found.
 (default: False)

 Examples

 .. code-block:: json

 { "actor": "aws.sqs.WaitUntilEmpty",
 "desc": "Wait until release-0025a* queues are empty",
 "options": {
 "name": "release-0025a",
 "region": "us-east-1",
 "required": true
 }
 }

 Dry Mode

 This actor performs the finding of the queue, but will pretend that the
 count is 0 and return success. Will fail even in dry mode if `required`
 option is set to True and no queues with the name pattern are found.
 """

 all_options = {
 'name': (str, REQUIRED, 'Name or pattern for SQS queues.'),
 'region': (str, REQUIRED, 'AWS region (or zone), such as us-west-2'),
 'required': (bool, False, 'At least 1 queue must be found.')
 }

 @gen.coroutine
 def _wait(self, queue, sleep=3):
 """Sleeps until an SQS Queue has emptied out.

 Args:
 queue: AWS SQS Queue object
 sleep: Int of seconds to wait between checks

 Returns:
 True: When queue is empty.
 """

 count = 0
 while True:
 if not self._dry:
 self.log.debug('Counting %s' % queue.url)
 visible = yield self.thread(queue.count)
 attr = 'ApproximateNumberOfMessagesNotVisible'
 invisible = yield self.thread(queue.get_attributes, attr)
 invisible_int = int(invisible[attr])
 count = visible + invisible_int
 else:
 self.log.info('Pretending that count is 0 for %s' % queue.url)
 count = 0

 self.log.debug('Queue has %s messages in it.' % count)
 if count > 0:
 self.log.info('Waiting on %s to become empty...' % queue.name)
 yield utils.tornado_sleep(sleep)
 else:
 self.log.debug('Queue is empty!')
 break

 raise gen.Return(True)

 @gen.coroutine
 def _execute(self):
 """Executes an actor and yields the results when its finished.

 raises: gen.Return()
 """
 pattern = self.option('name')
 matched_queues = yield self._fetch_queues(pattern)

 # Note: this does not check for dry mode.
 if self.option('required') and not matched_queues:
 raise QueueNotFound(
 'No queues like "%s" were found!' % pattern)

 self.log.info('Waiting for "%s" queues to become empty.' %
 self.option('name'))

 sleepers = []
 for q in matched_queues:
 sleepers.append(self._wait(queue=q))

 self.log.info('%s queues need to be empty.' % len(matched_queues))
 self.log.info([q.name for q in matched_queues])
 yield sleepers
 self.log.info('All queues report empty.')

 raise gen.Return()

 © Copyright 2015, Nextdoor.
 Created using Sphinx 1.4.

_modules/kingpin/actors/aws/elb.html

 Navigation

 		
 index

 		
 modules |

 		Kingpin 0.4.0 documentation »

 		Module code »

 Source code for kingpin.actors.aws.elb

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#
Copyright 2014 Nextdoor.com, Inc

"""
:mod:`kingpin.actors.aws.elb`
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
"""

import logging
import math

from boto.exception import BotoServerError
from tornado import concurrent
from tornado import gen

from kingpin import utils
from kingpin.actors import exceptions
from kingpin.actors.aws import base
from kingpin.actors.utils import dry
from kingpin.constants import REQUIRED

log = logging.getLogger(__name__)

__author__ = 'Mikhail Simin <mikhail@nextdoor.com>'

This executor is used by the tornado.concurrent.run_on_executor()
decorator. We would like this to be a class variable so its shared
across RightScale objects, but we see testing IO errors when we
do this.
EXECUTOR = concurrent.futures.ThreadPoolExecutor(10)

[docs]class CertNotFound(exceptions.UnrecoverableActorFailure):

 """Raised when an ELB is not found"""

Helper function
[docs]def p2f(string):
 """Convert percentage string into float.

 Converts string like '78.9%' into 0.789
 """
 return float(string.strip('%')) / 100

[docs]class ELBBaseActor(base.AWSBaseActor):

 """Base class for ELB actors."""

 all_options = {
 'name': (str, REQUIRED, 'Name of the ELB'),
 'count': ((int, str), REQUIRED,
 'Specific count, or percentage of instances to wait for.'),
 'region': (str, REQUIRED, 'AWS region (or zone) name, like us-west-2')
 }

[docs]class WaitUntilHealthy(ELBBaseActor):

 """Wait indefinitely until a specified ELB is considered "healthy".

 This actor will loop infinitely until a healthy threshold of the ELB is
 met. The threshold can be reached when the ``count`` as specified in the
 options is less than or equal to the number of InService instances in the
 ELB.

 Another situation is for ``count`` to be a string specifying a percentage
 (see examples). In this case the percent of InService instances has to be
 greater than the ``count`` percentage.

 Options

 :name:
 The name of the ELB to operate on

 :count:
 Number, or percentage of InService instance to consider this ELB healthy

 :region:
 AWS region (or zone) name, such as us-east-1 or us-west-2

 Examples

 .. code-block:: json

 { "actor": "aws.elb.WaitUntilHealthy",
 "desc": "Wait until production-frontend has 16 hosts",
 "options": {
 "name": "production-frontend",
 "count": 16,
 "region": "us-west-2"
 }
 }

 .. code-block:: json

 { "actor": "aws.elb.WaitUntilHealthy",
 "desc": "Wait until production-frontend has 85% of hosts in-service",
 "options": {
 "name": "production-frontend",
 "count": "85%",
 "region": "us-west-2"
 }
 }

 Dry Mode

 This actor performs the finding of the ELB as well as calculating its
 health at all times. The only difference in dry mode is that it will not
 re-count the instances if the ELB is not healthy. A log message will be
 printed indicating that the run is dry, and the actor will exit with
 success.
 """

 desc = "Waiting until {name} is healthy ({count} in-service)"

 def _get_expected_count(self, count, total_count):
 """Calculate the expected count for a given percentage.

 Either returns the passed count if it's an integer, or
 calculates the count given an expected percentage.

 Args:
 count: Minimum count (int) or percentage (int) of hosts that must
 be healthy.
 total_count: The total number of instances in the ELB.

 Returns:
 Number of instances required to be 'healthy'
 """

 if '%' in str(count):
 expected_count = math.ceil(total_count * p2f(count))
 else:
 expected_count = int(count)

 return expected_count

 @gen.coroutine
 def _is_healthy(self, elb, count):
 """Check if there are `count` InService instances for a given elb.

 Args:
 count: integer, or string with % in it.
 for more information read _get_expected_count()

 Returns:
 Boolean whether or not the ELB is healthy enough.
 """
 name = elb.name

 self.log.debug('Counting ELB InService instances for : %s' % name)

 # Get all instances for this ELB
 instance_list = yield self.thread(elb.get_instance_health)
 total_count = len(instance_list)

 self.log.debug('All instances: %s' % instance_list)
 in_service_count = [
 i.state for i in instance_list].count('InService')

 expected_count = self._get_expected_count(count, total_count)

 healthy = (in_service_count >= expected_count)
 self.log.debug('ELB "%s" healthy state: %s' % (elb.name, healthy))

 raise gen.Return(healthy)

 @gen.coroutine
 def _execute(self):
 """Executes an actor and yields the results when its finished.

 raises: gen.Return(True)
 """

 elb = yield self._find_elb(name=self.option('name'))

 repeating_log = utils.create_repeating_log(
 self.log.info,
 'Still waiting for %s to become healthy' % self.option('name'),
 seconds=30)
 while True:
 healthy = yield self._is_healthy(elb, count=self.option('count'))

 if healthy is True:
 self.log.info('ELB is healthy.')
 break

 # In dry mode, fake it
 if self._dry:
 self.log.info('Pretending that ELB is healthy.')
 break

 # Not healthy :(continue looping
 self.log.debug('Retrying in 3 seconds.')
 yield utils.tornado_sleep(3)

 utils.clear_repeating_log(repeating_log)

 raise gen.Return()

[docs]class SetCert(ELBBaseActor):

 """Find a server cert in IAM and use it for a specified ELB.

 Options

 :region:
 (str) AWS region (or zone) name, like us-west-2

 :name:
 (str) Name of the ELB

 :cert_name:
 (str) Unique IAM certificate name, or ARN

 :port:
 (int) Port associated with the cert.
 (default: 443)

 Example

 .. code-block:: json

 { "actor": "aws.elb.SetCert",
 "desc": "Run SetCert",
 "options": {
 "cert_name": "new-cert",
 "name": "some-elb",
 "region": "us-west-2"
 }
 }

 Dry run

 Will check that ELB and Cert names are existent, and will also check that
 the credentials provided for AWS have access to the new cert for ssl.
 """

 all_options = {
 'name': (str, REQUIRED, 'Name of the ELB'),
 'port': (int, 443, 'Port associated with the cert'),
 'region': (str, REQUIRED, 'AWS region (or zone) name, like us-west-2'),
 'cert_name': (str, REQUIRED, 'Unique IAM certificate name, or ARN'),
 }

 @gen.coroutine
 def _check_access(self, elb):
 """Perform a dummy operation to check credential accesss.

 Intended to be used in a dry run, this method attempts to perform an
 invalid set_listener call and monitors the output of the error. If the
 error is anything other than AccessDenied then the provided credentials
 are sufficient and we do nothing.

 Args:
 elb: boto LoadBalancer object.
 """
 try:
 # A blank ARN value should have code 'CertificateNotFound'
 # We're only checking if credentials have sufficient access
 yield self.thread(
 elb.set_listener_SSL_certificate,
 self.option('port'),
 '')
 except BotoServerError as e:
 if e.error_code == 'AccessDenied':
 raise exceptions.InvalidCredentials(e)

 @gen.coroutine
 def _get_cert_arn(self, name):
 """Return a server_certificate ARN.

 Searches for a certificate object and returns the "ARN" value.

 Args:
 name: certificate name

 Raises:
 CertNotFound - if the name doesn't match an existing cert.

 Returns:
 string: the ARN value of the certificate
 """

 self.log.debug('Searching for cert "%s"...' % name)
 try:
 cert = yield self.thread(
 self.iam_conn.get_server_certificate, name)
 except BotoServerError as e:
 raise CertNotFound(
 'Could not find cert %s. Reason: %s' % (name, e))

 # Get the ARN of this cert
 arn = cert['get_server_certificate_response'].get(
 'get_server_certificate_result').get(
 'server_certificate').get(
 'server_certificate_metadata').get('arn')

 raise gen.Return(arn)

 @gen.coroutine
 @dry('Would instruct {elb} to use cert: {arn}')
 def _use_cert(self, elb, arn):
 """Assign an ssl cert to a given ELB.

 Args:
 elb: boto elb object.
 arn: ARN for server certificate to use.
 """

 self.log.info('Setting ELB "%s" to use cert arn: %s' % (elb, arn))
 try:
 yield self.thread(
 elb.set_listener_SSL_certificate, self.option('port'), arn)
 except BotoServerError as e:
 raise exceptions.RecoverableActorFailure(
 'Applying new SSL cert to %s failed: %s' % (elb, e))

 def _compare_certs(self, elb, new_arn):
 """Check if a given ELB is using a provided ARN for its certificate.

 Args:
 elb: boto elb object.
 new_arn: ARN for server certificate to use.

 Returns:
 boolean: used cert is same as the provided one.
 """

 ssl = [lis for lis in elb.listeners
 if lis[0] == self.option('port')][0]

 arn = ssl[4]

 return arn == new_arn

 @gen.coroutine
 def _execute(self):
 """Find ELB, and a Cert, then apply it."""
 elb = yield self._find_elb(self.option('name'))
 cert_arn = yield self._get_cert_arn(self.option('cert_name'))

 same_cert = self._compare_certs(elb, cert_arn)

 if same_cert:
 self.log.warning('ELB %s is already using this cert.' % elb)
 raise gen.Return()

 if self._dry:
 yield self._check_access(elb)

 yield self._use_cert(elb=elb, arn=cert_arn)

[docs]class RegisterInstance(base.AWSBaseActor):

 """Add an EC2 instance to a load balancer.

 Options

 :elb:
 (str) Name of the ELB

 :instances:
 (str, list) Instance id, or list of ids. Default "self" id.

 :region:
 (str) AWS region (or zone) name, like us-west-2

 :enable_zones:
 (bool) add all available AZ to the elb. Default: True

 Example

 .. code-block:: json

 { "actor": "aws.elb.RegisterInstance",
 "desc": "Run RegisterInstance",
 "options": {
 "elb": "prod-loadbalancer",
 "instances": "i-123456",
 "region": "us-east-1",
 }
 }

 Dry run

 Will find the specified ELB, but not take any actions regarding instances.
 """

 all_options = {
 'elb': (str, REQUIRED, 'Name of the ELB'),
 'region': (str, REQUIRED, 'AWS region (or zone) name, like us-west-2'),
 'instances': ((str, list), None, (
 'Instance id, or list of ids. If no value is specified then '
 'the instance id of the executing machine is used.')),
 'enable_zones': ((str, bool), True, 'Enable all zones for this ELB.')
 }

 @gen.coroutine
 @dry('Would add {instances} to {elb}')
 def _add(self, elb, instances):
 """Invoke elb.register_instances

 Args:
 elb: boto Loadbalancer object
 instances: list of instance ids.
 """
 yield self.thread(elb.register_instances, instances)

 @gen.coroutine
 @dry('Would ensure {elb} is a member of all AZs')
 def _check_elb_zones(self, elb):
 """Ensure that `elb` has all available zones."""
 zones = yield self.thread(self.ec2_conn.get_all_zones)
 zone_names = {z.name for z in zones}

 enabled_zones = set(elb.availability_zones)

 if not zone_names.issubset(enabled_zones):
 self.log.warning('ELB "%s" is missing some AZ.' % elb.name)
 self.log.info('Enabling all zones: %s' % zone_names)
 yield self.thread(elb.enable_zones, zone_names)

 @gen.coroutine
 def _execute(self):
 elb = yield self._find_elb(self.option('elb'))
 instances = self.option('instances')

 if not instances:
 self.log.debug('No instance provided. Using current instance id.')
 iid = yield self._get_meta_data('instance-id')
 instances = [iid]
 self.log.debug('Instances is: %s' % instances)

 if type(instances) is not list:
 instances = [instances]

 self.log.info(('Adding the following instances to elb: '
 '%s' % ', '.join(instances)))
 yield self._add(elb=elb, instances=instances)

 if self.str2bool(self.option('enable_zones')):
 yield self._check_elb_zones(elb=elb)

[docs]class DeregisterInstance(base.AWSBaseActor):

 """Remove EC2 instance(s) from an ELB.

 Options

 :elb:
 (str) Name of the ELB. Optionally this may also be a `*`.

 :instances:
 (str, list) Instance id, or list of ids

 :region:
 (str) AWS region (or zone) name, like us-west-2

 :wait_on_draining:
 (bool) Whether or not to wait for connection draining

 Example

 .. code-block:: json

 { "actor": "aws.elb.DeregisterInstance",
 "desc": "Run DeregisterInstance",
 "options": {
 "elb": "my-webserver-elb",
 "instances": "i-abcdeft",
 "region": "us-west-2"
 }
 }

 Extremely simple way to remove the local instance running this code from
 all ELBs its been joined to:

 .. code-block:: json

 { "actor": "aws.elb.DeregisterInstance",
 "desc": "Run DeregisterInstance",
 "options": {
 "elb": "*",
 "region": "us-west-2"
 }
 }

 Dry run

 Will find the ELB but not take any actions regarding the instances.
 """

 all_options = {
 'elb': (str, REQUIRED, 'Name of the ELB'),
 'region': (str, REQUIRED, 'AWS region (or zone) name, like us-west-2'),
 'instances': ((str, list), None, (
 'Instance id, or list of ids. If no value is specified then '
 'the instance id of the executing machine is used.')),
 'wait_on_draining': ((str, bool), True, (
 'Whether or not to wait for the ELB to drain connections '
 'before returning from the actor.'))
 }

 @gen.coroutine
 @dry('Would remove instances from {elb}: {instances}')
 def _remove(self, elb, instances):
 """Invoke elb.deregister_instances

 Args:
 elb: boto Loadbalancer object
 instances: list of instance ids.
 """
 self.log.info(('Removing instances from %s: %s'
 % (elb, ', '.join(instances))))

 yield self.thread(elb.deregister_instances, instances)
 yield self._wait_on_draining(elb)

 @gen.coroutine
 def _wait_on_draining(self, elb):
 """Waits for the ELB Connection Draining to occur.

 ELB Connection Draining is a configured-setting on the ELB that will
 continue to allow existing connections to be handeled before finally
 cutting them off at the timeout. This method will detect if connection
 draining is enabled, and optionally "sleep" for that time period before
 returning from the actor.

 Args:
 elb: boto Loadbalancer object
 """
 if not self.str2bool(self.option('wait_on_draining')):
 self.log.warning('Not waiting for connections to drain!')

 attrs = yield self.thread(elb.get_attributes)
 if attrs.connection_draining.enabled:
 timeout = attrs.connection_draining.timeout

 self.log.info('Connection Draining Enabled, waiting %s(s)'
 % timeout)
 yield utils.tornado_sleep(timeout)

 @gen.coroutine
 def _find_instance_elbs(self, instances):
 """Finds all ELBs that Instances are members of.

 Searches through all of the ELBs in a particular region and looks for
 which ones have any of the instances supplied in them. Creates a list
 of the ELBs, and returns the entire list.

 Args:
 instances: A list of Instance IDs

 Returns:
 a list of LoadBalancer objects
 """
 all_elbs = yield self.thread(self.elb_conn.get_all_load_balancers)
 elbs_with_members = []

 for instance in instances:
 elbs = filter(lambda lb: instance in [i.id for i in lb.instances],
 all_elbs)
 self.log.debug('%s is a member of %s' % (instance, elbs))
 elbs_with_members.extend(elbs)

 raise gen.Return(elbs_with_members)

 @gen.coroutine
 def _execute(self):
 instances = self.option('instances')

 if not instances:
 self.log.debug('No instance provided. Using current instance id.')
 iid = yield self._get_meta_data('instance-id')
 instances = [iid]
 self.log.debug('Instances is: %s' % instances)

 if type(instances) is not list:
 instances = [instances]

 if self.option('elb') == '*':
 elbs = yield self._find_instance_elbs(instances)
 else:
 elb = yield self._find_elb(self.option('elb'))
 elbs = [elb]

 tasks = []
 for elb in elbs:
 tasks.append(self._remove(elb=elb, instances=instances))

 yield tasks

 © Copyright 2015, Nextdoor.
 Created using Sphinx 1.4.

_modules/kingpin/actors/aws/cloudformation.html

 Navigation

 		
 index

 		
 modules |

 		Kingpin 0.4.0 documentation »

 		Module code »

 Source code for kingpin.actors.aws.cloudformation

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#
Copyright 2014 Nextdoor.com, Inc

"""
:mod:`kingpin.actors.aws.cloudformation`
^^
"""

import logging

from boto.exception import BotoServerError
from tornado import concurrent
from tornado import gen
from tornado import ioloop

from kingpin import utils
from kingpin.actors import exceptions
from kingpin.actors.aws import base
from kingpin.constants import REQUIRED

log = logging.getLogger(__name__)

__author__ = 'Matt Wise <matt@nextdoor.com>'

This executor is used by the tornado.concurrent.run_on_executor()
decorator. We would like this to be a class variable so its shared
across RightScale objects, but we see testing IO errors when we
do this.
EXECUTOR = concurrent.futures.ThreadPoolExecutor(10)

[docs]class CloudFormationError(exceptions.RecoverableActorFailure):

 """Raised on any generic CloudFormation error."""

[docs]class InvalidTemplate(exceptions.UnrecoverableActorFailure):

 """An invalid CloudFormation template was supplied."""

[docs]class StackAlreadyExists(exceptions.RecoverableActorFailure):

 """The requested CloudFormation stack already exists."""

[docs]class StackNotFound(exceptions.RecoverableActorFailure):

 """The requested CloudFormation stack does not exist."""

CloudFormation has over a dozen different 'stack states'... but for the
purposes of these actors, we really only care about a few logical states.
Here we map the raw states into logical states.
COMPLETE = ('CREATE_COMPLETE', 'UPDATE_COMPLETE')
DELETED = ('DELETE_COMPLETE', 'ROLLBACK_COMPLETE')
IN_PROGRESS = (
 'CREATE_IN_PROGRESS', 'DELETE_IN_PROGRESS',
 'ROLLBACK_IN_PROGRESS', 'UPDATE_COMPLETE_CLEANUP_IN_PROGRESS',
 'UPDATE_IN_PROGRESS', 'UPDATE_ROLLBACK_COMPLETE_CLEANUP_IN_PROGRESS',
 'UPDATE_ROLLBACK_IN_PROGRESS')
FAILED = (
 'CREATE_FAILED', 'DELETE_FAILED', 'ROLLBACK_FAILED',
 'UPDATE_ROLLBACK_FAILED')

[docs]class CloudFormationBaseActor(base.AWSBaseActor):

 """Base Actor for CloudFormation tasks"""

 # Get references to existing objects that are used by the
 # tornado.concurrent.run_on_executor() decorator.
 ioloop = ioloop.IOLoop.current()

 executor = EXECUTOR

 # Used mainly for unit testing..
 all_options = {
 'region': (str, REQUIRED, 'AWS region (or zone) name, like us-west-2')
 }

 @gen.coroutine
 def _get_stacks(self):
 """Gets a list of existing CloudFormation stacks.

 Gets a list of all of the stacks currently in the account, that are not
 in the status 'DELETE_COMPLETE'.

 Returns:
 A list of boto.cloudformation.stack.StackSummary objects.
 """
 # Get the list of all possible stack statuses from the Boto module,
 # then pull out the few that indicate a stack is no longer in
 # existence.
 self.log.debug('Getting list of stacks from Amazon..')
 statuses = list(self.cf_conn.valid_states)
 statuses.remove('DELETE_COMPLETE')
 stacks = yield self.thread(self.cf_conn.list_stacks,
 stack_status_filters=statuses)
 raise gen.Return(stacks)

 @gen.coroutine
 def _get_stack(self, stack):
 """Returns a cloudformation.Stack object of the requested stack.

 Args:
 stack: String name

 Returns
 <Stack Object> or <None>
 """
 stacks = yield self._get_stacks()
 self.log.debug('Checking whether stack %s exists.' % stack)
 new_list = [s for s in stacks if s.stack_name == stack]

 if len(new_list) > 0:
 raise gen.Return(new_list[0])

 raise gen.Return(None)

 @gen.coroutine
 def _wait_until_state(self, desired_states, sleep=15):
 """Indefinite loop until a stack has finished creating/deleting.

 Whether the stack has failed, suceeded or been rolled back... this
 method loops until the process has finished. If the final status is a
 failure (rollback/failed) then an exception is raised.

 Args:
 desired_states: (tuple/list) States that indicate a successful
 operation.
 sleep: (int) Time in seconds between stack status checks

 Raises:
 StackNotFound: If the stack doesn't exist.
 """
 while True:
 stack = yield self._get_stack(self.option('name'))

 if not stack:
 msg = 'Stack "%s" not found.' % self.option('name')
 raise StackNotFound(msg)

 self.log.debug('Got stack %s status: %s' %
 (stack.stack_name, stack.stack_status))

 # First, lets see if the stack is still in progress (either
 # creation, deletion, or rollback .. doesn't really matter)
 if stack.stack_status in IN_PROGRESS:
 self.log.info('Stack is in %s, waiting %s(s)...' %
 (stack.stack_status, sleep))
 yield utils.tornado_sleep(sleep)
 continue

 # If the stack is in the desired state, then return
 if stack.stack_status in desired_states:
 self.log.info('Stack execution completed, final state: %s' %
 stack.stack_status)
 raise gen.Return()

 # Lastly, if we get here, then something is very wrong and we got
 # some funky status back. Throw an exception.
 msg = 'Unxpected stack state received (%s)' % stack.stack_status
 raise CloudFormationError(msg)

[docs]class Create(CloudFormationBaseActor):

 """Creates a CloudFormation stack.

 Creates a CloudFormation stack from scratch and waits until the stack is
 fully built before exiting the actor.

 Options

 :capabilities:
 A list of CF capabilities to add to the stack.

 :disable_rollback:
 Set to True to disable rollback of the stack if creation failed.

 :name:
 The name of the queue to create

 :parameters:
 A dictionary of key/value pairs used to fill in the parameters for the
 CloudFormation template.

 :region:
 AWS region (or zone) string, like 'us-west-2'

 :template:
 String of path to CloudFormation template. Can either be in the form of a
 local file path (ie, `./my_template.json`) or a URI (ie
 `https://my_site.com/cf.json`).

 :timeout_in_minutes:
 The amount of time that can pass before the stack status becomes
 CREATE_FAILED.

 Examples

 .. code-block:: json

 { "desc": "Create production backend stack",
 "actor": "aws.cloudformation.Create",
 "options": {
 "capabilities": ["CAPABILITY_IAM"],
 "disable_rollback": true,
 "name": "%CF_NAME%",
 "parameters": {
 "test_param": "%TEST_PARAM_NAME%",
 },
 "region": "us-west-1",
 "template": "/examples/cloudformation_test.json",
 "timeout_in_minutes": 45,
 }
 }

 Dry Mode

 Validates the template, verifies that an existing stack with that name does
 not exist. Does not create the stack.
 """

 all_options = {
 'capabilities': (list, [],
 'The list of capabilities that you want to allow '
 'in the stack'),
 'disable_rollback': (bool, False,
 'Set to `True` to disable rollback of the stack '
 'if stack creation failed.'),
 'name': (str, REQUIRED, 'Name of the stack'),
 'parameters': (dict, {}, 'Parameters passed into the CF '
 'template execution'),
 'region': (str, REQUIRED, 'AWS region (or zone) name, like us-west-2'),
 'template': (str, REQUIRED,
 'Path to the AWS CloudFormation File. http(s)://, '
 'file:///, absolute or relative file paths.'),
 'timeout_in_minutes': (int, 60,
 'The amount of time that can pass before the '
 'stack status becomes CREATE_FAILED'),
 }

 desc = "Creating CloudFormation Stack {name}"

 def __init__(self, *args, **kwargs):
 """Initialize our object variables."""
 super(Create, self).__init__(*args, **kwargs)

 # Check if the supplied CF template is a local file. If it is, read it
 # into memory.
 (self._template_body, self._template_url) = self._get_template_body(
 self.option('template'))

 def _get_template_body(self, template):
 """Reads in a local template file and returns the contents.

 If the template string supplied is a local file resource (has no
 URI prefix), then this method will return the contents of the file.
 Otherwise, returns None.

 Args:
 template: String with a reference to a template location.

 Returns:
 One tuple of:
 (Contents of template file, None)
 (None, URL of template)

 Raises:
 InvalidTemplate
 """
 remote_types = ('http://', 'https://')

 if template.startswith(remote_types):
 return (None, template)

 try:
 # TODO: leverage self.readfile()
 return (open(template, 'r').read(), None)
 except IOError as e:
 raise InvalidTemplate(e)

 @gen.coroutine
 def _validate_template(self):
 """Validates the CloudFormation template.

 Raises:
 InvalidTemplate
 exceptions.InvalidCredentials
 """
 if self._template_body is not None:
 self.log.info('Validating template with AWS...')
 else:
 self.log.info('Validating template (%s) with AWS...' %
 self._template_url)

 try:
 yield self.thread(
 self.cf_conn.validate_template,
 template_body=self._template_body,
 template_url=self._template_url)
 except BotoServerError as e:
 msg = '%s: %s' % (e.error_code, e.message)

 if e.status == 400:
 raise InvalidTemplate(msg)

 raise

 @gen.coroutine
 def _create_stack(self):
 """Executes the stack creation."""
 # Create the stack, and get its ID.
 self.log.info('Creating stack %s' % self.option('name'))
 try:
 stack_id = yield self.thread(
 self.cf_conn.create_stack,
 self.option('name'),
 template_body=self._template_body,
 template_url=self._template_url,
 parameters=self.option('parameters').items(),
 disable_rollback=self.option('disable_rollback'),
 timeout_in_minutes=self.option('timeout_in_minutes'),
 capabilities=self.option('capabilities'))
 except BotoServerError as e:
 msg = '%s: %s' % (e.error_code, e.message)

 if e.status == 400:
 raise CloudFormationError(msg)

 raise

 self.log.info('Stack %s created: %s' % (self.option('name'), stack_id))
 raise gen.Return(stack_id)

 @gen.coroutine
 def _execute(self):
 stack_name = self.option('name')

 yield self._validate_template()

 # If a stack already exists, we cannot re-create it. Raise a
 # recoverable exception and let the end user decide whether this is bad
 # or not.
 exists = yield self._get_stack(stack_name)
 if exists:
 raise StackAlreadyExists('Stack %s already exists!' % stack_name)

 # If we're in dry mode, exit at this point. We can't do anything
 # further to validate that the creation process will work.
 if self._dry:
 self.log.info('Skipping CloudFormation Stack creation.')
 raise gen.Return()

 # Create the stack
 yield self._create_stack()

 # Now wait until the stack creation has finished
 yield self._wait_until_state(COMPLETE)

 raise gen.Return()

[docs]class Delete(CloudFormationBaseActor):

 """Deletes a CloudFormation stack

 Options

 :name:
 The name of the queue to create

 :region:
 AWS region (or zone) string, like 'us-west-2'

 Examples

 .. code-block:: json

 { "desc": "Delete production backend stack",
 "actor": "aws.cloudformation.Create",
 "options" {
 "region": "us-west-1",
 "name": "%CF_NAME%",
 }
 }

 Dry Mode

 Validates that the CF stack exists, but does not delete it.
 """

 all_options = {
 'name': (str, REQUIRED, 'Name of the stack'),
 'region': (str, REQUIRED, 'AWS region (or zone) name, like us-west-2')
 }

 desc = "Deleting CloudFormation Stack {name}"

 @gen.coroutine
 def _delete_stack(self):
 """Executes the stack deletion."""
 # Create the stack, and get its ID.
 self.log.info('Deleting stack %s' % self.option('name'))
 try:
 ret = yield self.thread(
 self.cf_conn.delete_stack, self.option('name'))
 except BotoServerError as e:
 msg = '%s: %s' % (e.error_code, e.message)

 if e.status == 400:
 raise CloudFormationError(msg)

 raise
 self.log.info('Stack %s delete requested: %s' %
 (self.option('name'), ret))
 raise gen.Return(ret)

 @gen.coroutine
 def _execute(self):
 stack_name = self.option('name')

 # If the stack doesn't exist, let the user know.
 exists = yield self._get_stack(stack_name)
 if not exists:
 raise StackNotFound('Stack %s does not exist!' % stack_name)

 # If we're in dry mode, exit at this point. We can't do anything
 # further to validate that the creation process will work.
 if self._dry:
 self.log.info('Skipping CloudFormation Stack deletion.')
 raise gen.Return()

 # Delete
 yield self._delete_stack()

 # Now wait until the stack creation has finished
 try:
 yield self._wait_until_state(DELETED)
 except StackNotFound:
 # Pass here because a stack not found exception is totally
 # reasonable since we're deleting the stack. Sometimes Amazon
 # actually deletes the stack immediately, and othertimes it lists
 # the stack as a 'deleted' state, but we still get that state back.
 # Either case is fine.
 pass

 raise gen.Return()

 © Copyright 2015, Nextdoor.
 Created using Sphinx 1.4.

_modules/kingpin/actors/aws/base.html

 Navigation

 		
 index

 		
 modules |

 		Kingpin 0.4.0 documentation »

 		Module code »

 Source code for kingpin.actors.aws.base

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#
Copyright 2014 Nextdoor.com, Inc

"""
:mod:`kingpin.actors.aws.base`
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The AWS Actors allow you to interact with the resources (such as SQS and ELB)
inside your Amazon AWS account. These actors all support dry runs properly, but
each actor has its own caveats with ``dry=True``. Please read the instructions
below for using each actor.

Required Environment Variables

Note, these can be skipped only if you have a .aws/credentials file in place.

:AWS_ACCESS_KEY_ID:
 Your AWS access key

:AWS_SECRET_ACCESS_KEY:
 Your AWS secret
"""

import json
import logging
import urllib
import re

from boto import utils as boto_utils
from boto import exception as boto_exception
from datadiff import diff
from tornado import concurrent
from tornado import gen
from tornado import ioloop
from retrying import retry
from boto.s3.connection import OrdinaryCallingFormat
import boto.cloudformation
import boto.ec2
import boto.ec2.elb
import boto.iam
import boto.sqs
import boto.s3

from kingpin import utils
from kingpin import exceptions as kingpin_exceptions
from kingpin.actors import base
from kingpin.actors import exceptions
from kingpin.actors.aws import settings as aws_settings

log = logging.getLogger(__name__)

__author__ = 'Mikhail Simin <mikhail@nextdoor.com>'

EXECUTOR = concurrent.futures.ThreadPoolExecutor(10)

[docs]class ELBNotFound(exceptions.RecoverableActorFailure):

 """Raised when an ELB is not found"""

[docs]class InvalidMetaData(exceptions.UnrecoverableActorFailure):

 """Raised when fetching AWS metadata."""

[docs]class InvalidPolicy(exceptions.RecoverableActorFailure):

 """Raised when Amazon indicates that policy JSON is invalid."""

class AWSBaseActor(base.BaseActor):

 # Get references to existing objects that are used by the
 # tornado.concurrent.run_on_executor() decorator.
 ioloop = ioloop.IOLoop.current()
 executor = EXECUTOR

 all_options = {
 'region': (str, None, 'AWS Region (or zone) to connect to.')
 }

 def __init__(self, *args, **kwargs):
 """Check for required settings."""

 super(AWSBaseActor, self).__init__(*args, **kwargs)

 # By default, we will try to let Boto handle discovering its
 # credentials at instantiation time. This _can_ result in synchronous
 # API calls to the Metadata service, but those should be fast.
 key = None
 secret = None

 # In the event though that someone has explicitly set the AWS access
 # keys in the environment (either for the purposes of a unit test, or
 # because they wanted to), we use those values.
 if (aws_settings.AWS_ACCESS_KEY_ID and
 aws_settings.AWS_SECRET_ACCESS_KEY):
 key = aws_settings.AWS_ACCESS_KEY_ID
 secret = aws_settings.AWS_SECRET_ACCESS_KEY

 # On our first simple IAM connection, test the credentials and make
 # sure things worked!
 try:
 # Establish connection objects that don't require a region
 self.iam_conn = boto.iam.connection.IAMConnection(
 aws_access_key_id=key,
 aws_secret_access_key=secret)
 except boto.exception.NoAuthHandlerFound:
 raise exceptions.InvalidCredentials(
 'AWS settings imported but not all credentials are supplied. '
 'AWS_ACCESS_KEY_ID: %s, AWS_SECRET_ACCESS_KEY: %s' % (
 aws_settings.AWS_ACCESS_KEY_ID,
 aws_settings.AWS_SECRET_ACCESS_KEY))

 # Establish region-specific connection objects.
 region = self.option('region')
 if not region:
 return

 # In case a zone was provided instead of region we can convert
 # it on the fly
 zone_check = re.match(r'(.*[0-9])([a-z]*)$', region)

 if zone_check and zone_check.group(2):
 zone = region # Only saving this for the log below

 # Set the fixed region
 region = zone_check.group(1)
 self.log.warning('Converting zone "%s" to region "%s".' % (
 zone, region))

 region_names = [r.name for r in boto.ec2.elb.regions()]
 if region not in region_names:
 err = ('Region "%s" not found. Available regions: %s' %
 (region, region_names))
 raise exceptions.InvalidOptions(err)

 self.ec2_conn = boto.ec2.connect_to_region(
 region,
 aws_access_key_id=key,
 aws_secret_access_key=secret)
 self.elb_conn = boto.ec2.elb.connect_to_region(
 region,
 aws_access_key_id=key,
 aws_secret_access_key=secret)
 self.cf_conn = boto.cloudformation.connect_to_region(
 region,
 aws_access_key_id=key,
 aws_secret_access_key=secret)
 self.sqs_conn = boto.sqs.connect_to_region(
 region,
 aws_access_key_id=key,
 aws_secret_access_key=secret)
 self.s3_conn = boto.s3.connect_to_region(
 region,
 aws_access_key_id=key,
 aws_secret_access_key=secret,
 calling_format=OrdinaryCallingFormat())

 @concurrent.run_on_executor
 @retry(**aws_settings.RETRYING_SETTINGS)
 @utils.exception_logger
 def thread(self, function, *args, **kwargs):
 """Execute `function` in a concurrent thread.

 Example:
 >>> zones = yield thread(ec2_conn.get_all_zones)

 This allows execution of any function in a thread without having
 to write a wrapper method that is decorated with run_on_executor()
 """
 try:
 return function(*args, **kwargs)
 except boto_exception.BotoServerError as e:
 # If we're using temporary IAM credentials, when those expire we
 # can get back a blank 400 from Amazon. This is confusing, but it
 # happens because of https://github.com/boto/boto/issues/898. In
 # most cases, these temporary IAM creds can be re-loaded by
 # reaching out to the AWS API (for example, if we're using an IAM
 # Instance Profile role), so thats what Boto tries to do. However,
 # if you're using short-term creds (say from SAML auth'd logins),
 # then this fails and Boto returns a blank 400.
 if (e.status == 400 and
 e.reason == 'Bad Request' and
 e.error_code is None):
 msg = 'Access credentials have expired'
 raise exceptions.InvalidCredentials(msg)

 msg = '%s: %s' % (e.error_code, e.message)
 if e.status == 403:
 raise exceptions.InvalidCredentials(msg)

 raise

 @gen.coroutine
 def _find_elb(self, name):
 """Return an ELB with the matching name.

 Must find exactly 1 match. Zones are limited by the AWS credentials.

 Args:
 name: String-name of the ELB to search for

 Returns:
 A single ELB reference object

 Raises:
 ELBNotFound
 """
 self.log.info('Searching for ELB "%s"' % name)

 try:
 elbs = yield self.thread(self.elb_conn.get_all_load_balancers,
 load_balancer_names=name)
 except boto_exception.BotoServerError as e:
 msg = '%s: %s' % (e.error_code, e.message)
 log.error('Received exception: %s' % msg)

 if e.status == 400:
 raise ELBNotFound(msg)

 raise

 self.log.debug('ELBs found: %s' % elbs)

 if len(elbs) != 1:
 raise ELBNotFound('Expected to find exactly 1 ELB. Found %s: %s'
 % (len(elbs), elbs))

 raise gen.Return(elbs[0])

 @concurrent.run_on_executor
 @retry(**aws_settings.RETRYING_SETTINGS)
 def _get_meta_data(self, key):
 """Get AWS meta data for current instance.

 http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
 ec2-instance-metadata.html
 """

 meta = boto_utils.get_instance_metadata(timeout=1, num_retries=2)
 if not meta:
 raise InvalidMetaData('No metadata available. Not AWS instance?')

 data = meta.get(key, None)
 if not data:
 raise InvalidMetaData('Metadata for key `%s` is not available')

 return data

 def _policy_doc_to_dict(self, policy):
 """Converts a Boto UUEncoded Policy document to a Dict.

 args:
 policy: The policy string returned by Boto
 """
 return json.loads(urllib.unquote(policy))

 def _parse_policy_json(self, policy):
 """Parse a single JSON file into an Amazon policy.

 Validates that the policy document can be parsed, strips out any
 comments, and fills in any environmental tokens. Returns a dictionary
 of the contents.

 Returns None if the input is None.

 args:
 policy: The Policy JSON file to read.

 returns:
 A dictionary of the parsed policy.
 """
 if policy is None:
 return None

 # Run through any supplied Inline IAM Policies and verify that they're
 # not corrupt very early on.
 self.log.debug('Parsing and validating %s' % policy)

 try:
 p_doc = utils.convert_script_to_dict(script_file=policy,
 tokens=self._init_tokens)
 except kingpin_exceptions.InvalidScript as e:
 raise exceptions.UnrecoverableActorFailure('Error parsing %s: %s' %
 (policy, e))

 return p_doc

 def _diff_policy_json(self, policy1, policy2):
 """Compares two dicts and returns True/False.

 Sorts two dicts (including sorting of the lists!!) and then diffs them.

 args:
 policy1: First policy (a)
 policy2: Second policy (b)

 returns:
 None: No diff
 Str: A diff string
 """
 policy1 = utils.order_dict(policy1)
 policy2 = utils.order_dict(policy2)

 if policy1 == policy2:
 return

 return str(diff(policy1, policy2))

 © Copyright 2015, Nextdoor.
 Created using Sphinx 1.4.

_modules/kingpin/actors/aws/iam/certs.html

 Navigation

 		
 index

 		
 modules |

 		Kingpin 0.4.0 documentation »

 		Module code »

 Source code for kingpin.actors.aws.iam.certs

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#
Copyright 2014 Nextdoor.com, Inc

"""
:mod:`kingpin.actors.aws.iam.certs`
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
"""

import logging

from boto.exception import BotoServerError
from tornado import concurrent
from tornado import gen

from kingpin.actors import exceptions
from kingpin.actors.aws.iam import base
from kingpin.constants import REQUIRED

log = logging.getLogger(__name__)

__author__ = 'Mikhail Simin <mikhail@nextdoor.com>'

This executor is used by the tornado.concurrent.run_on_executor()
decorator. We would like this to be a class variable so its shared
across RightScale objects, but we see testing IO errors when we
do this.
EXECUTOR = concurrent.futures.ThreadPoolExecutor(10)

[docs]class UploadCert(base.IAMBaseActor):

 """Uploads a new SSL Cert to AWS IAM.

 Options

 :private_key_path:
 (str) Path to the private key.

 :path:
 (str) The AWS "path" for the server certificate. Default: "/"

 :public_key_path:
 (str) Path to the public key certificate.

 :name:
 (str) The name for the server certificate.

 :cert_chain_path:
 (str) Path to the certificate chain. Optional.

 Example

 .. code-block:: json

 { "actor": "aws.iam.UploadCert",
 "desc": "Upload a new cert",
 "options": {
 "name": "new-cert",
 "private_key_path": "/cert.key",
 "public_key_path": "/cert.pem",
 "cert_chain_path": "/cert-chain.pem"
 }
 }

 Dry run

 Checks that the passed file paths are valid. In the future will also
 validate that the files are of correct format and content.
 """

 all_options = {
 'name': (str, REQUIRED, 'The name for the server certificate.'),
 'public_key_path': (str, REQUIRED,
 'Path to the public key certificate.'),
 'private_key_path': (str, REQUIRED, 'Path to the private key.'),
 'cert_chain_path': (str, None, 'Path to the certificate chain.'),
 'path': (str, None, 'The path for the server certificate.')
 }

 @gen.coroutine
 def _upload(self, cert_name, cert_body, private_key, cert_chain, path):
 """Create a new server certificate in AWS IAM."""
 yield self.thread(
 self.iam_conn.upload_server_cert,
 cert_name=cert_name,
 cert_body=cert_body,
 private_key=private_key,
 cert_chain=cert_chain,
 path=path)

 @gen.coroutine
 def _execute(self):
 """Gather all the cert data and upload it.

 The `boto` library requires actual cert contents, but this actor
 expects paths to files.
 """
 # Gather needed cert data
 cert_chain_body = None
 if self.option('cert_chain_path'):
 cert_chain_body = self.readfile(self.option('cert_chain_path'))

 cert_body = self.readfile(self.option('public_key_path'))
 private_key = self.readfile(self.option('private_key_path'))

 # Upload it
 if self._dry:
 self.log.info('Would upload cert "%s"' % self.option('name'))
 raise gen.Return()

 self.log.info('Uploading cert "%s"' % self.option('name'))
 yield self._upload(
 cert_name=self.option('name'),
 cert_body=cert_body,
 private_key=private_key,
 cert_chain=cert_chain_body,
 path=self.option('path'))

[docs]class DeleteCert(base.IAMBaseActor):

 """Delete an existing SSL Cert in AWS IAM.

 Options

 :name:
 (str) The name for the server certificate.

 Example

 .. code-block:: json

 { "actor": "aws.iam.DeleteCert",
 "desc": "Run DeleteCert",
 "options": {
 "name": "fill-in"
 }
 }

 Dry run

 Will find the cert by name or raise an exception if it's not found.
 """

 all_options = {
 'name': (str, REQUIRED, 'The name for the server certificate.')
 }

 @gen.coroutine
 def _find_cert(self, name):
 """Find a cert by name."""

 self.log.debug('Searching for cert "%s"...' % name)
 try:
 yield self.thread(self.iam_conn.get_server_certificate, name)
 except BotoServerError as e:
 raise exceptions.UnrecoverableActorFailure(
 'Could not find cert %s. Reason: %s' % (name, e))

 @gen.coroutine
 def _delete(self, cert_name):
 """Delete a server certificate in AWS IAM."""
 yield self.thread(self.iam_conn.delete_server_cert, cert_name)

 @gen.coroutine
 def _execute(self):
 if self._dry:
 self.log.info('Checking that the cert exists...')
 yield self._find_cert(self.option('name'))
 self.log.info('Would delete cert "%s"' % self.option('name'))
 raise gen.Return()

 self.log.info('Deleting cert "%s"' % self.option('name'))
 yield self._delete(cert_name=self.option('name'))

 © Copyright 2015, Nextdoor.
 Created using Sphinx 1.4.

search.html

 Navigation

 		
 index

 		
 modules |

 		Kingpin 0.4.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Nextdoor.
 Created using Sphinx 1.4.

_modules/kingpin/actors/aws/iam/entities.html

 Navigation

 		
 index

 		
 modules |

 		Kingpin 0.4.0 documentation »

 		Module code »

 Source code for kingpin.actors.aws.iam.entities

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#
Copyright 2014 Nextdoor.com, Inc

"""
:mod:`kingpin.actors.aws.iam.entities`
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
"""

import json
import os
import logging

from boto.exception import BotoServerError
from tornado import concurrent
from tornado import gen

from kingpin.actors import exceptions
from kingpin.actors.aws.iam import base
from kingpin.constants import REQUIRED
from kingpin.constants import STATE

log = logging.getLogger(__name__)

__author__ = 'Matt Wise <matt@nextdoor.com>'

This executor is used by the tornado.concurrent.run_on_executor()
decorator. We would like this to be a class variable so its shared
across RightScale objects, but we see testing IO errors when we
do this.
EXECUTOR = concurrent.futures.ThreadPoolExecutor(10)

class EntityBaseActor(base.IAMBaseActor):

 """User/Group/Role Base Management Class

 Managing Users, Groups and Roles in Amazon IAM is nearly identical. This
 class abstracts that work, so that the actual User/Group/Role actors can be
 extremely simple and just handle the differences between each type of IAM
 entity.
 """

 all_options = {
 'name': (str, REQUIRED, 'The name of the user.'),
 'state': (STATE, 'present',
 'Desired state of the User: present/absent'),
 'inline_policies': ((str, list), None,
 'List of inline policy JSON files to apply.')
 }

 def __init__(self, *args, **kwargs):
 super(EntityBaseActor, self).__init__(*args, **kwargs)

 # These IAM Connection methods must be overridden in a subclass of this
 # actor. Each of these is a "generalized" name for the method in Boto
 # found at http://boto.cloudhackers.com/en/latest/ref/iam.html.
 #
 # This is a little confusing, but the idea is that these methods all
 # basically behave the same (are called the same way, return the same
 # type of data), so we should be able to generalize them into
 # variables.
 #
 # Once these are mapped to real IAM calls, then the methods in this
 # base class will work.

 # The "text name" of the entity type. This is either:
 # user, group, role, instance_profile
 self.entity_name = 'base'

 self.create_entity = None
 self.delete_entity = None
 self.delete_entity_policy = None
 self.get_all_entities = None
 self.get_all_entity_policies = None
 self.get_entity_policy = None
 self.put_entity_policy = None

 def _generate_policy_name(self, policy):
 """Generates an Amazon-friendly Policy name from a filename.

 Amazon Inline IAM Policies have names -- and although allowing our
 users to enter their own name might be nice, its overkill in most
 cases. We'd rather just determine the name for them from the name of
 the policy definition file that they included in the JSON.

 http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_iam-limits.html

 args:
 policy: The file name of the policy document

 returns:
 A string name to use as the policy name
 """
 # Get rid of the extension first
 name = os.path.splitext(policy)[0]

 # If theres a leading slash, strip it
 name = name.lstrip('/')

 # Replace slashes with dashes instead
 name = name.replace('/', '-')
 name = name.replace('\\', '-')

 # Strip out any non-allowed characters that made it through
 name = name.replace('*', '')
 name = name.replace('?', '')

 return name

 def _parse_inline_policies(self, policies):
 """Read, parse and store our inline policies.

 Any of the inline policies passed into this actor at init time are read
 in, parsed, turned into dicts and then stored in an object level
 dictionary for future use. This is done at __init__ time to make sure
 we catch any syntax errors as early as possible.

 args:
 policies: A string or list of strings that point to JSON files with
 IAM policies in them.
 """
 # If the inline_policies is None, then we bail and set
 # self.inline_policies to none.
 if policies is None:
 self.inline_policies = None
 return

 # Prepare to store our parsed inline policies in a hash of key/values
 # -- the key is the policy name (with no file ending) and the value is
 # the dict of the policy itself.
 self.inline_policies = {}

 # If a single policy was supplied (ie, maybe on a command line) then
 # turn it into a list.
 if isinstance(policies, basestring):
 policies = [policies]

 # Run through any supplied Inline IAM Policies and verify that they're
 # not corrupt very early on.
 for policy in policies:
 p_name = self._generate_policy_name(policy)
 self.inline_policies[p_name] = self._parse_policy_json(policy)

 self.log.debug('Parsed policy %s: %s' %
 (p_name, self.inline_policies[p_name]))

 @gen.coroutine
 def _get_entity_policies(self, name):
 """Returns a dictionary of all the inline policies attached to a entity.

 args:
 name: The IAM Entity Name (Name/Group)

 returns:
 A dict of key/value pairs - key is the policy name, value is the
 dict-version of the policy document.
 """
 policies = {}

 # Get the list of inline policies attached to an entity. Note, not
 # all entities have a concept of inline policies. If
 # self.get_all_entity_policies is None, it returns a TypeError. We'll
 # catch that and silently move on.
 policy_names = []
 try:
 self.log.debug('Searching for any inline policies for %s' % name)
 ret = yield self.thread(self.get_all_entity_policies, name)
 policy_names = (ret['list_%s_policies_response' % self.entity_name]
 ['list_%s_policies_result' % self.entity_name]
 ['policy_names'])
 except BotoServerError as e:
 if e.status == 404:
 # The user doesn't exist.. likely in a dry run. Return no
 # policies.
 policy_names = []
 else:
 raise exceptions.RecoverableActorFailure(
 'An unexpected API error occurred: %s' % e)
 except TypeError:
 pass

 # Iterate through all of the named policies and fire off
 # get-requests, but don't yield on them yet.
 tasks = []
 for p_name in policy_names:
 tasks.append((p_name,
 self.thread(self.get_entity_policy, name, p_name)))

 # Now that we've fired off all the calls, we walk through each yielded
 # result, parse the returned policy, and append it to our policies
 # list. We also catch any raised exceptions here.
 for t in tasks:
 (p_name, p_task) = t
 try:
 raw = yield p_task
 except BotoServerError as e:
 raise exceptions.RecoverableActorFailure(
 'An unexpected API error occurred downloading '
 'policy %s: %s' % (p_name, e))

 # Convert the uuencoded doc string into a dict
 p_doc = self._policy_doc_to_dict((
 raw['get_%s_policy_response' % self.entity_name]
 ['get_%s_policy_result' % self.entity_name]
 ['policy_document']))

 # Store the converted document under the policy name key
 policies[p_name] = p_doc
 self.log.debug('Got policy %s/%s: %s' % (name, p_name, p_doc))

 raise gen.Return(policies)

 @gen.coroutine
 def _ensure_inline_policies(self, name):
 """Ensures that all of the inline IAM policies for a entity are managed

 This method has three stages.. first it ensures that any missing
 policies (as determined by the policy name) are applied to a entity.
 Second, it determines if any existing policies have changed locally and
 need to be updated in IAM. Finally it purges unmanaged policies that
 were applied to a entity out of band.

 args:
 name: The entity to manage
 """
 # Get the list of current entity policies first
 existing_policies = yield self._get_entity_policies(name)

 # First, push any policies that we have listed, but aren't in the
 # entity
 tasks = []
 for policy in (set(self.inline_policies.keys()) -
 set(existing_policies.keys())):
 policy_doc = self.inline_policies[policy]
 tasks.append(self._put_entity_policy(name, policy, policy_doc))
 yield tasks

 # Do we have matching policies that we're managing here, and are
 # already attached to the entity profile? Lets make sure each one of
 # those matches the policy we have here, and update it if necessary.
 tasks = []
 for policy in (set(self.inline_policies.keys()) &
 set(existing_policies.keys())):
 new = self.inline_policies[policy]
 exist = existing_policies[policy]
 diff = self._diff_policy_json(exist, new)
 if diff:
 self.log.info('Policy %s differs from Amazons:' % policy)
 for line in diff.split('\n'):
 self.log.info('Diff: %s' % line)
 policy_doc = self.inline_policies[policy]
 tasks.append(self._put_entity_policy(name, policy, policy_doc))
 yield tasks

 # Purge any policies we found in AWS that were not listed in our actor
 tasks = []
 for policy in (set(existing_policies.keys()) -
 set(self.inline_policies.keys())):
 tasks.append(self._delete_entity_policy(name, policy))
 yield tasks

 @gen.coroutine
 def _delete_entity_policy(self, name, policy_name):
 """Optionally pushes a policy to an IAM entity.

 args:
 name: The IAM Entity Name
 policy_name: The entity policy name
 """
 if self._dry:
 self.log.warning('Would delete policy %s from %s %s' %
 (policy_name, self.entity_name, name))
 raise gen.Return()

 self.log.info('Deleting policy %s from %s %s' %
 (policy_name, self.entity_name, name))
 try:
 ret = yield self.thread(
 self.delete_entity_policy, name, policy_name)
 self.log.debug('Policy %s deleted: %s' % (policy_name, ret))
 except BotoServerError as e:
 if e.error_code != 404:
 raise exceptions.RecoverableActorFailure(
 'An unexpected API error occurred: %s' % e)

 @gen.coroutine
 def _put_entity_policy(self, name, policy_name, policy_doc):
 """Optionally pushes a policy to an IAM Entity.

 args:
 name: The IAM Entity Name
 policy_name: The entity policy name
 policy_doc: The ploicy document object itself
 """
 if self._dry:
 self.log.warning('Would push policy %s to %s %s' %
 (policy_name, self.entity_name, name))
 raise gen.Return()

 self.log.info('Pushing policy %s to %s %s' %
 (policy_name, self.entity_name, name))
 try:
 ret = yield self.thread(
 self.put_entity_policy,
 name,
 policy_name,
 json.dumps(policy_doc))
 self.log.debug('Policy %s pushed: %s' % (policy_name, ret))
 except BotoServerError as e:
 raise exceptions.RecoverableActorFailure(
 'An unexpected API error occurred: %s' % e)

 @gen.coroutine
 def _get_entity(self, name):
 """Returns an IAM Entity JSON Blob.

 Searches for an IAM Entity and either returns None, or a JSON blob that
 describes the Entity.

 args:
 name: The IAM Entity Name
 """
 self.log.debug('Searching for %s %s' % (self.entity_name, name))

 # Get a list of all of our entities.
 try:
 entities = yield self.thread(self.get_all_entities)
 except BotoServerError as e:
 raise exceptions.RecoverableActorFailure(
 'An unexpected API error occurred: %s' % e)

 # Now search for the entity
 entity = [entity for entity in
 entities['list_%ss_response' % self.entity_name]
 ['list_%ss_result' % self.entity_name]
 ['%ss' % self.entity_name] if
 entity['%s_name' % self.entity_name] == name]

 # If there aren't any entities, return None.
 if not entity:
 raise gen.Return()

 # If there is more than one entities, something went really wrong.
 # Raise an exception.
 if len(entity) > 1:
 raise exceptions.RecoverableActorFailure(
 'More than one %s found matching %s! Am I crazy?!' %
 (self.entity_name, name))

 # Finally, return the result!
 self.log.debug('Found %s %s' % (self.entity_name, entity[0]['arn']))
 raise gen.Return(entity[0])

 @gen.coroutine
 def _ensure_entity(self, name, state):
 """Ensures a entity is either present or absent.

 Looks up the entities current state and then makes a decision about
 creating or deleting the entity. If the entity is already in the
 correct state, not changes are made.

 args:
 name: The IAM User Name
 state: 'present' or 'absent'
 """
 self.log.info('Ensuring that %s %s is %s' %
 (self.entity_name, name, state))

 entity = yield self._get_entity(name)

 if entity and state == 'present':
 raise gen.Return()
 elif not entity and state == 'present':
 yield self._create_entity(name)
 elif entity and state == 'absent':
 yield self._delete_entity(name)
 elif not entity and state == 'absent':
 raise gen.Return()

 @gen.coroutine
 def _create_entity(self, name):
 """Creates an IAM Entity.

 If the entity exists, we just warn and move on.

 args:
 name: The IAM Entity Name
 """
 if self._dry:
 self.log.warning('Would create %s %s' % (self.entity_name, name))
 raise gen.Return()

 try:
 ret = yield self.thread(
 self.create_entity, name)
 except BotoServerError as e:
 if e.status != 409:
 raise exceptions.RecoverableActorFailure(
 'An unexpected API error occurred: %s' % e)
 self.log.warning(
 '%s %s already exists, skipping creation.' %
 (self.entity_name, name))
 raise gen.Return()

 arn = (ret['create_%s_response' % self.entity_name]
 ['create_%s_result' % self.entity_name]
 [self.entity_name]['arn'])
 self.log.info('%s %s created' % (self.entity_name, arn))

 @gen.coroutine
 def _delete_entity(self, name):
 """Deletes and IAM Entity.

 If the entity doesn't exist, we just warn and move on.

 args:
 name: The IAM Entity Name
 """
 if self._dry:
 self.log.warning('Would delete %s %s' % (self.entity_name, name))
 raise gen.Return()

 try:
 # Get the entities policies. They have to be deleted before we can
 # possibly move forward and delete the entity.
 existing_policies = yield self._get_entity_policies(name)
 tasks = []
 for policy in existing_policies:
 tasks.append(self._delete_entity_policy(name, policy))
 yield tasks

 # Now delete the entity
 yield self.thread(self.delete_entity, name)
 self.log.info('%s %s deleted' % (self.entity_name, name))
 except BotoServerError as e:
 if e.status != 404:
 raise exceptions.RecoverableActorFailure(
 'An unexpected API error occurred: %s' % e)
 self.log.warning('%s %s doesn\'t exist' % (self.entity_name, name))

 @gen.coroutine
 def _add_user_to_group(self, name, group):
 """Quick helper method to add a user to a group.

 args:
 name: user name
 group: group name
 """
 if self._dry:
 self.log.warning('Would have added %s to %s' % (name, group))
 raise gen.Return()

 try:
 self.log.info('Adding %s to %s' % (name, group))
 yield self.thread(self.iam_conn.add_user_to_group, group, name)
 except BotoServerError as e:
 raise exceptions.RecoverableActorFailure(
 'An unexpected API error occurred: %s' % e)

 @gen.coroutine
 def _remove_user_from_group(self, name, group):
 """Quick helper method to remove a user from a group.

 args:
 name: user name
 group: group name
 """
 if self._dry:
 self.log.warning('Would have removed %s from %s' % (name, group))
 raise gen.Return()

 try:
 self.log.info('Removing %s from %s' % (name, group))
 yield self.thread(self.iam_conn.remove_user_from_group,
 group, name)
 except BotoServerError as e:
 raise exceptions.RecoverableActorFailure(
 'An unexpected API error occurred: %s' % e)

[docs]class User(EntityBaseActor):

 """Manages an IAM User.

 This actor manages the state of an Amazon IAM User.

 Currently we can:

 * Ensure is present or absent
 * Manage the inline policies for the user
 * Manage the groups the user is in

 Options

 :name:
 (str) Name of the User profile to manage

 :state:
 (str) Present or Absent. Default: "present"

 :groups:
 (str,array) A list of groups for the user to be a member of.
 Default: None

 :inline_policies:
 (str,array) A list of strings that point to JSON files to use as inline
 policies.
 Default: None

 Example

 .. code-block:: json

 { "actor": "aws.iam.User",
 "desc": "Ensure that Bob exists",
 "options": {
 "name": "bob",
 "state": "present",
 "groups": "my-test-group",
 "inline_policies": [
 "read-all-s3.json",
 "create-other-stuff.json"
]
 }
 }

 Dry run

 Will let you know if the user exists or not, and what changes it would make
 to the users policy and settings. Will also parse the inline policies
 supplied, make sure any tokens in the files are replaced, and that the
 files are valid JSON.
 """

 all_options = {
 'name': (str, REQUIRED, 'The name of the user.'),
 'state': (STATE, 'present',
 'Desired state of the User: present/absent'),
 'groups': ((str, list), None, 'List of groups to add the user to.'),
 'inline_policies': ((str, list), None,
 'List of inline policy JSON files to apply.')
 }

 desc = "IAM User {name}"

 def __init__(self, *args, **kwargs):
 super(User, self).__init__(*args, **kwargs)

 self.entity_name = 'user'
 self.create_entity = self.iam_conn.create_user
 self.delete_entity = self.iam_conn.delete_user
 self.delete_entity_policy = self.iam_conn.delete_user_policy
 self.get_all_entities = self.iam_conn.get_all_users
 self.get_all_entity_policies = self.iam_conn.get_all_user_policies
 self.get_entity_policy = self.iam_conn.get_user_policy
 self.put_entity_policy = self.iam_conn.put_user_policy

 # Parse the supplied inline policies
 self._parse_inline_policies(self.option('inline_policies'))

 @gen.coroutine
 def _ensure_groups(self, name, groups):
 """Ensure that this user is a member of specific groups.

 args:
 name: The user we're managing
 groups: The list (or single) of groups to join be members of
 """
 if isinstance(groups, basestring):
 groups = [groups]

 current_groups = set()
 try:
 res = yield self.thread(self.iam_conn.get_groups_for_user, name)
 current_groups = {g['group_name'] for g in
 res['list_groups_for_user_response']
 ['list_groups_for_user_result']
 ['groups']}
 except BotoServerError as e:
 # If the error is a 404, then the user doesn't exist and we can
 # assume that the mappings don't exist at all. We leave the
 # existin_mappings list alone. For any other error, raise.
 if e.status != 404:
 raise exceptions.RecoverableActorFailure(
 'An unexpected API error occurred: %s' % e)

 # Find any groups that we're not already a member of, and add us
 tasks = []
 for new_group in set(groups) - current_groups:
 tasks.append(self._add_user_to_group(name, new_group))
 yield tasks

 # Find any group memberships we didn't know about, and purge them
 tasks = []
 for bad_group in current_groups - set(groups):
 tasks.append(self._remove_user_from_group(name, bad_group))
 yield tasks

 @gen.coroutine
 def _execute(self):
 name = self.option('name')
 state = self.option('state')
 groups = self.option('groups')

 yield self._ensure_entity(name, state)
 if state == 'absent':
 raise gen.Return()

 if self.option('inline_policies') is not None:
 yield self._ensure_inline_policies(name)

 if groups is not None:
 yield self._ensure_groups(name, groups)

 raise gen.Return()

[docs]class Group(EntityBaseActor):

 """Manages an IAM Group.

 This actor manages the state of an Amazon IAM Group.

 Currently we can:

 * Ensure is present or absent
 * Manage the inline policies for the group
 * Purge (or not) all group members and delete the group

 Options

 :name:
 (str) Name of the Group profile to manage

 :force:
 (bool) Forcefully delete the group (explicitly purging all group
 memberships).
 Default: false

 :state:
 (str) Present or Absent. Default: "present"

 :inline_policies:
 (str,array) A list of strings that point to JSON files to use as inline
 policies. You can also pass in a single inline policy as a string.
 Default: None

 Example

 .. code-block:: json

 { "actor": "aws.iam.Group",
 "desc": "Ensure that devtools exists",
 "options": {
 "name": "devtools",
 "state": "present",
 "inline_policies": [
 "read-all-s3.json",
 "create-other-stuff.json"
]
 }
 }

 Dry run

 Will let you know if the group exists or not, and what changes it would
 make to the groups policy and settings. Will also parse the inline policies
 supplied, make sure any tokens in the files are replaced, and that the
 files are valid JSON.
 """

 all_options = {
 'name': (str, REQUIRED, 'The name of the group.'),
 'force': (bool, False, 'Forcefully delete the group.'),
 'state': (STATE, 'present',
 'Desired state of the group: present/absent'),
 'inline_policies': ((str, list), None,
 'List of inline policy JSON files to apply.')
 }

 desc = "IAM Group {name}"

 def __init__(self, *args, **kwargs):
 super(Group, self).__init__(*args, **kwargs)

 self.entity_name = 'group'
 self.create_entity = self.iam_conn.create_group
 self.delete_entity = self.iam_conn.delete_group
 self.delete_entity_policy = self.iam_conn.delete_group_policy
 self.get_all_entities = self.iam_conn.get_all_groups
 self.get_all_entity_policies = self.iam_conn.get_all_group_policies
 self.get_entity_policy = self.iam_conn.get_group_policy
 self.put_entity_policy = self.iam_conn.put_group_policy

 # Parse the supplied inline policies
 self._parse_inline_policies(self.option('inline_policies'))

 @gen.coroutine
 def _get_group_users(self, name):
 """Returns a list of users assigned to the group.

 args:
 name: the name of the group

 returns:
 a list of user name strings
 """
 users = []
 try:
 raw = yield self.thread(self.iam_conn.get_group, name)
 users = [user['user_name'] for user in
 raw['get_group_response']['get_group_result']['users']]
 except BotoServerError as e:
 if e.status != 404:
 raise exceptions.RecoverableActorFailure(
 'An unexpected API error occurred: %s' % e)
 except KeyError:
 # No users!
 users = []

 raise gen.Return(users)

 @gen.coroutine
 def _purge_group_users(self, name, force):
 """Forcefully purge all users from the group.

 This is used only if the group has users, is being deleted, and the
 'purge' option was set.

 args:
 name: the group name
 force: boolean whether or not to actually force the removal
 """
 users = yield self._get_group_users(name)

 if not force and users:
 self.log.warning(('Will not be able to delete this group '
 'without first removing all of its members. '
 'Use the `force` option to purge all members.'))
 self.log.warning('Group members: %s' % ', '.join(users))

 if not force:
 raise gen.Return()

 tasks = []
 for user in users:
 tasks.append(self._remove_user_from_group(user, name))
 yield tasks

 @gen.coroutine
 def _execute(self):
 name = self.option('name')
 state = self.option('state')
 force = self.option('force')

 if state == 'absent':
 yield self._purge_group_users(name, force)

 yield self._ensure_entity(name, state)
 if state == 'absent':
 raise gen.Return()

 if self.option('inline_policies') is not None:
 yield self._ensure_inline_policies(name)

 raise gen.Return()

[docs]class Role(EntityBaseActor):

 """Manages an IAM Role.

 This actor manages the state of an Amazon IAM Role.

 Currently we can:

 * Ensure is present or absent
 * Manage the inline policies for the role
 * Manage the Assume Role Policy Document

 Options

 :name:
 (str) Name of the Role to manage

 :state:
 (str) Present or Absent. Default: "present"

 :inline_policies:
 (str,array) A list of strings that point to JSON files to use as inline
 policies. You can also pass in a single inline policy as a string.
 Default: None

 :assume_role_policy_document:
 (str) A string with an Amazon IAM Assume Role policy. Not providing this
 causes Kingpin to ignore the value, and Amazon defaults the role to an
 'EC2' style rule. Supplying the document will cause Kingpin to ensure the
 assume role policy is correct.
 Default: None

 Example

 .. code-block:: json

 { "actor": "aws.iam.Role",
 "desc": "Ensure that myapp exists",
 "options": {
 "name": "myapp",
 "state": "present",
 "inline_policies": [
 "read-all-s3.json",
 "create-other-stuff.json"
]
 }
 }

 Dry run

 Will let you know if the group exists or not, and what changes it would
 make to the groups policy and settings. Will also parse the inline policies
 supplied, make sure any tokens in the files are replaced, and that the
 files are valid JSON.
 """

 all_options = {
 'name': (str, REQUIRED, 'The name of the role.'),
 'state': (STATE, 'present',
 'Desired state of the group: present/absent'),
 'inline_policies': ((str, list), None,
 'List of inline policy JSON files to apply.'),
 'assume_role_policy_document': (str, None,
 ('The policy that grants an entity'
 'permission to assume the role'))
 }

 desc = "IAM Role {name}"

 def __init__(self, *args, **kwargs):
 super(Role, self).__init__(*args, **kwargs)

 self.entity_name = 'role'
 self.create_entity = self.iam_conn.create_role
 self.delete_entity = self.iam_conn.delete_role
 self.delete_entity_policy = self.iam_conn.delete_role_policy
 self.get_all_entities = self.iam_conn.list_roles
 self.get_all_entity_policies = self.iam_conn.list_role_policies
 self.get_entity_policy = self.iam_conn.get_role_policy
 self.put_entity_policy = self.iam_conn.put_role_policy

 # Pre-parse the supplied inline policies
 self._parse_inline_policies(self.option('inline_policies'))

 # Pre-parse the Assume Role Policy Document if it was supplied
 if self.option('assume_role_policy_document') is not None:
 self.assume_role_policy_doc = self._parse_policy_json(
 self.option('assume_role_policy_document'))

 @gen.coroutine
 def _ensure_assume_role_doc(self, name):
 """Ensures that the Assume Role Policy for a Role is up to date.

 Downloads the existing Assume Role Policy for a given Role, then
 compares it against our configured policy and optionally updates it if
 they differ.

 Args:
 name: The role we're workin with
 """
 # Get our existing role policy from the entity
 entity = yield self._get_entity(name)

 # If the entity doesn't exist, then we must be in a Dry run and the
 # role hasn't been created yet. Just bail silently.
 if not entity:
 raise gen.Return()

 # Parse the raw data into a dict we can compare
 exist = self._policy_doc_to_dict(entity['assume_role_policy_document'])
 new = self.assume_role_policy_doc

 # Now diff it against our desired policy. If no diff, then quietly
 # return.
 diff = self._diff_policy_json(exist, new)
 if not diff:
 self.log.debug('Assume Role Policy documents match')
 raise gen.Return()

 self.log.info('Assume Role Policy differs from Amazons:')
 for line in diff.split('\n'):
 self.log.info('Diff: %s' % line)

 if self._dry:
 self.log.warning('Would have updated the Assume Role Policy Doc')
 raise gen.Return()

 self.log.info('Updating the Assume Role Policy Document')
 yield self.thread(
 self.iam_conn.update_assume_role_policy, name, json.dumps(new))

 @gen.coroutine
 def _execute(self):
 name = self.option('name')
 state = self.option('state')

 yield self._ensure_entity(name, state)
 if state == 'absent':
 raise gen.Return()

 if self.option('inline_policies') is not None:
 yield self._ensure_inline_policies(name)

 if self.option('assume_role_policy_document') is not None:
 yield self._ensure_assume_role_doc(name)

 raise gen.Return()

[docs]class InstanceProfile(EntityBaseActor):

 """Manages an IAM Instance Profile.

 This actor manages the state of an Amazon IAM Instance Profile.

 Currently we can:

 * Ensure is present or absent
 * Assign an IAM Role to the Instance Profile

 Options

 :name:
 (str) Name of the Role to manage

 :state:
 (str) Present or Absent. Default: "present"

 :role:
 (str) Name of an IAM Role to assign to the Instance Profile.
 Default: None

 Example

 .. code-block:: json

 { "actor": "aws.iam.InstanceProfile",
 "desc": "Ensure that my-ecs-servers exists",
 "options": {
 "name": "my-ecs-servers",
 "state": "present",
 "role": "some-iam-role",
 }
 }

 Dry run

 Will let you know if the profile exists or not, and what changes it would
 make to the profile.
 """

 all_options = {
 'name': (str, REQUIRED, 'The name of the instance profile.'),
 'state': (STATE, 'present',
 'Desired state of the group: present/absent'),
 'role': (str, None, 'Name of an IAM Role to assign')
 }

 desc = "InstanceProfile {name}"

 def __init__(self, *args, **kwargs):
 super(InstanceProfile, self).__init__(*args, **kwargs)

 self.entity_name = 'instance_profile'
 self.create_entity = self.iam_conn.create_instance_profile
 self.delete_entity = self.iam_conn.delete_instance_profile
 self.get_all_entities = self.iam_conn.list_instance_profiles

 @gen.coroutine
 def _add_role(self, name, role):
 """Adds a role to an Instance Profile.

 args:
 name: The name of the Instance Profile we're managing
 role: The name of the role to assign to the profile
 """
 if self._dry:
 self.log.warning('Would add role %s from %s' % (role, name))
 raise gen.Return()

 try:
 self.log.info('Adding role %s to %s' % (role, name))
 yield self.thread(self.iam_conn.add_role_to_instance_profile,
 name, role)
 except BotoServerError as e:
 if e.status != 409:
 raise exceptions.RecoverableActorFailure(
 'An unexpected API error occurred: %s' % e)

 @gen.coroutine
 def _remove_role(self, name, role):
 """Removes a role assigned to an Instance Profile.

 args:
 name: The name of the InstanceProfile we're managing
 role: The name of the role to remove
 """
 if self._dry:
 self.log.warning('Would remove role %s from %s' % (role, name))
 raise gen.Return()

 try:
 self.log.info('Removing role %s from %s' % (role, name))
 yield self.thread(self.iam_conn.remove_role_from_instance_profile,
 name, role)
 except BotoServerError as e:
 if e.status != 404:
 raise exceptions.RecoverableActorFailure(
 'An unexpected API error occurred: %s' % e)

 @gen.coroutine
 def _ensure_role(self, name, role):
 """Ensures that an Instance Profile role is set correctly.

 Adds, Deletes or Changes the Role assigned to an Instance Profile.

 args:
 name: The IAM Instance Profile we're managing
 role: The desired role (or None)
 """
 existing = None
 try:
 raw = yield self.thread(self.iam_conn.get_instance_profile, name)
 existing = (raw['get_instance_profile_response']
 ['get_instance_profile_result']
 ['instance_profile']
 ['roles']
 ['member']
 ['role_name'])
 except BotoServerError as e:
 if e.status != 404:
 raise exceptions.RecoverableActorFailure(
 'An unexpected API error occurred: %s' % e)
 except KeyError:
 # Profile is not a member of any roles
 pass

 if not existing and not role:
 raise gen.Return()
 elif existing and not role:
 yield self._remove_role(name, existing)
 elif not existing and role:
 yield self._add_role(name, role)
 elif existing != role:
 yield self._remove_role(name, existing)
 yield self._add_role(name, role)

 @gen.coroutine
 def _execute(self):
 name = self.option('name')
 state = self.option('state')
 role = self.option('role')

 yield self._ensure_entity(name, state)
 if state == 'absent':
 raise gen.Return()

 if role is not None:
 yield self._ensure_role(name, role)

 © Copyright 2015, Nextdoor.
 Created using Sphinx 1.4.

_modules/kingpin/actors/aws/s3.html

 Navigation

 		
 index

 		
 modules |

 		Kingpin 0.4.0 documentation »

 		Module code »

 Source code for kingpin.actors.aws.s3

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#
Copyright 2016 Nextdoor.com, Inc

"""
:mod:`kingpin.actors.aws.s3`
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
"""

import json
import logging
import mock

from boto.s3 import lifecycle
from boto.exception import S3ResponseError
from boto.exception import BotoServerError
from tornado import concurrent
from tornado import gen
import jsonpickle

from kingpin.actors import exceptions
from kingpin.actors.utils import dry
from kingpin.actors.aws import base
from kingpin.constants import SchemaCompareBase
from kingpin.constants import REQUIRED
from kingpin.constants import STATE

log = logging.getLogger(__name__)

__author__ = 'Matt Wise <matt@nextdoor.com'

This executor is used by the tornado.concurrent.run_on_executor()
decorator. We would like this to be a class variable so its shared
across RightScale objects, but we see testing IO errors when we
do this.
EXECUTOR = concurrent.futures.ThreadPoolExecutor(10)

[docs]class InvalidBucketConfig(exceptions.RecoverableActorFailure):

 """Raised whenever an invalid option is passed to a Bucket"""

[docs]class LoggingConfig(SchemaCompareBase):

 """Provides JSON-Schema based validation of the supplied logging config.

 The S3 LoggingConfig format should look like this:

 .. code-block:: json

 { "target": "s3_bucket_name_here",
 "prefix": "an_optional_prefix_here" }

 If you supply an empty `target`, then we will explicitly remove the logging
 configuration from the bucket. Example:

 .. code-block:: json

 { "target": "" }

 """

 SCHEMA = {
 'type': ['object', 'null'],
 'required': ['target'],
 'additionalProperties': False,
 'properties': {
 'target': {'type': 'string'},
 'prefix': {'type': 'string'}
 }
 }

 valid = '{ "target": "<bucket name>", ["prefix": "<logging prefix>"]}'

[docs]class LifecycleConfig(SchemaCompareBase):

 """Provides JSON-Schema based validation of the supplied Lifecycle config.

 The S3 Lifecycle system allows for many unique configurations. Each
 configuration object defined in this schema will be turned into a
 :py:class:`boto.s3.lifecycle.Rule` object. All of the rules together will
 be turned into a :py:class:`boto.s3.lifecycle.Lifecycle` object.

 .. code-block:: json

 [
 { "id": "unique_rule_identifier",
 "prefix": "/some_path",
 "status": "Enabled",
 "expiration": 365,
 "transition": {
 "days": 90,
 "date": "2016-05-19T20:04:17+00:00",
 "storage_class": "GLACIER",
 }
 }
]
 """

 SCHEMA = {
 # The outer wrapper must be a list of properly formatted objects,
 # or Null if we are not going to manage this configuration at all.
 'type': ['array', 'null'],
 'uniqueItems': True,
 'items': {
 'type': 'object',
 'required': ['id', 'prefix', 'status'],
 'additionalProperties': False,
 'properties': {
 # The ID and Prefix must be strings. We do not allow for them
 # to be empty -- they must be defined.
 'id': {
 'type': 'string',
 'minLength': 1,
 'maxLength': 255,
 },
 'prefix': {'type': 'string'},

 # The Status field must be 'Enabled' or 'Disabled'
 'status': {
 'type': 'string',
 'enum': ['Enabled', 'Disabled'],
 },

 # Expiration and Transition can be empty, or have
 # configurations associated with them.
 'expiration': {
 'type': ['string', 'integer'],
 'pattern': '^[0-9]+$',
 },
 'transition': {
 'type': ['object', 'null'],
 'required': ['storage_class'],
 'properties': {
 'days': {
 'type': ['string', 'integer'],
 'pattern': '^[0-9]+$',
 },
 'date': {
 'type': 'string',
 'format': 'date-time'
 },
 'storage_class': {
 'type': 'string',
 'enum': ['GLACIER', 'STANDARD_IA']
 }
 }
 }
 }
 }
 }

[docs]class S3BaseActor(base.AWSBaseActor):

 """Base class for S3 actors."""

 all_options = {
 'name': (str, REQUIRED, 'Name of the S3 Bucket'),
 'state': (STATE, 'present',
 'Desired state of the bucket: present/absent'),
 'lifecycle': (LifecycleConfig, None,
 'List of Lifecycle configurations.'),
 'logging': (LoggingConfig, None,
 'Dict with the logging configuration information.'),
 'policy': ((str, None), None,
 'Path to the JSON policy file to apply to the bucket.'),
 'region': (str, REQUIRED, 'AWS region (or zone) name, like us-west-2'),
 'versioning': ((bool, None), None,
 ('Desired state of versioning on the bucket: '
 'true/false')),
 }

[docs]class Bucket(S3BaseActor):

 """Manage the state of a single S3 Bucket.

 The actor has the following functionality:

 * Ensure that an S3 bucket is present or absent.
 * Manage the bucket policy.
 * Manage the bucket Lifecycle configurations.
 * Enable or Suspend Bucket Versioning.
 Note: It is impossible to actually _disable_ bucket versioning -- once
 it is enabled, you can only suspend it, or re-enable it.

 Note about Buckets with Files

 Amazon requires that an S3 bucket be empty in order to delete it. Although
 we could recursively search for all files in the bucket and then delete
 them, this is a wildly dangerous thing to do inside the confines of this
 actor. Instead, we raise an exception and alert the you to the fact that
 they need to delete the files themselves.

 Options

 :name:
 The name of the bucket to operate on

 :state:
 (str) Present or Absent. Default: "present"

 :lifecycle:
 (:py:class:`LifecycleConfig`, None)

 A list of individual Lifecycle configurations. Each dictionary includes
 keys for the `id`, `prefix` and `status` as required parameters.
 Optionally you can supply an `expiration` and/or `transition` dictionary.

 If an empty list is supplied, or the list in any way does not match what
 is currently configured in Amazon, the appropriate changes will be made.

 :logging:
 (:py:class:`LoggingConfig`, None)

 If a dictionary is supplied (`{'target': 'logging_bucket', 'prefix':
 '/mylogs'}`), then we will configure bucket logging to the supplied
 bucket and prefix. If `prefix` is missing then no prefix will be used.

 If `target` is supplied as an empty string (`''`), then we will disable
 logging on the bucket. If `None` is supplied, we will not manage logging
 either way.

 :policy:
 (str, None) A JSON file with the bucket policy. Passing in a blank string
 will cause any policy to be deleted. Passing in None (or not passing it
 in at all) will cause Kingpin to ignore the policy for the bucket
 entirely. Default: None

 :region:
 AWS region (or zone) name, such as us-east-1 or us-west-2

 :versioning:
 (bool, None): Whether or not to enable Versioning on the bucket. If
 "None", then we don't manage versioning either way. Default: None

 Examples

 .. code-block:: json

 { "actor": "aws.s3.Bucket",
 "options": {
 "name": "kingpin-integration-testing",
 "region": "us-west-2",
 "policy": "./examples/aws.s3/amazon_put.json",
 "lifecycle": {
 "id": "main",
 "prefix": "/",
 "status": "Enabled",
 "expiration": 30,
 },
 "logging": {
 "target": "logs.myco.com",
 "prefix": "/kingpin-integratin-testing"
 },
 "versioning": true,
 }
 }

 Dry Mode

 Finds the bucket if it exists (or tells you it would create it). Describes
 each potential change it would make to the bucket depending on the
 configuration of the live bucket, and the options that were passed into the
 actor.

 Will gracefully fail and alert you if there are files in the bucket and you
 are trying to delete it.
 """

 desc = "S3 Bucket {name}"

 def __init__(self, *args, **kwargs):
 super(Bucket, self).__init__(*args, **kwargs)

 # If the policy is None, or '', we simply set it to self.policy. If its
 # anything else, we parse it.
 self.policy = self.option('policy')
 if self.option('policy'):
 self.policy = self._parse_policy_json(self.option('policy'))

 # If the Lifecycle config is anything but None, we parse it and
 # pre-build all of our Lifecycle/Rule/Expiration/Transition objects.
 if self.option('lifecycle') is not None:
 self.lifecycle = self._generate_lifecycle(self.option('lifecycle'))

 def _generate_lifecycle(self, config):
 """Generates a Lifecycle Configuration object.

 Takes the supplied configuration (a list of dicts) and turns them into
 proper Boto Lifecycle Rules, then returns a Lifecycle configuration
 object with these rules.

 args:
 config: A dict that matches the :py:class:`LifecycleConfig` schema.

 returns:
 :py:class:`boto.s3.lifecycle.Lifecycle`
 None: If the supplied configuration is empty
 """
 self.log.debug('Generating boto.s3.lifecycle.Lifecycle config..')

 # If the config list is empty, return None -- later in the code this
 # None will be used to determine whether or not to "delete" the
 # existing bucket lifecycle configs.
 if len(config) < 1:
 return None

 # Generate a fresh Lifecycle configuration object
 lc = lifecycle.Lifecycle()
 for c in config:
 self.log.debug('Generating lifecycle rule from: %s' % config)

 # You must supply at least 'expiration' or 'transition' in your
 # lifecycle config. This is tricky to check in the jsonschema, so
 # we do it here.
 if not any(k in c for k in ('expiration', 'transition')):
 raise InvalidBucketConfig(
 'You must supply at least an expiration or transition '
 'configuration in your config: %s' % c)

 # If the expiration 'days' were in string form turn them into an
 # integer.
 if 'expiration' in c:
 c['expiration'] = int(c['expiration'])

 # If 'transition' is supplied, turn it into a lifecycle.Transition
 # object using the generate_transition() method.
 if 'transition' in c:
 transition_dict = c['transition']
 transition_obj = self._generate_transition(transition_dict)
 c['transition'] = transition_obj

 # Finally add our rule to the lifecycle object
 lc.add_rule(**c)

 # Interesting hack -- Although Amazon does not document this, or
 # provide it as a parameter to the boto.s3.lifecycle.Rule/Lifecycle
 # objects, it seems that when you "get" the config from Amazon, each
 # Rule has a blank "Rule" attribute added. The Lifecycle object is the
 # same it get a blank "Lifecycle" attribute added. These show up when
 # we do the comparison between our config and the Amazon one, so we are
 # adding them here to help the comparison later on in
 # self._ensure_lifecycle().
 for r in lc:
 r.Rule = ''
 lc.LifecycleConfiguration = ''

 return lc

 def _generate_transition(self, config):
 """Generates a Lifecycle Transition object.

 See :py:class:`~boto.s3.lifecycle.Transition` for details about the
 contents of the dictionary.

 (*Note, we don't do much input validation here - we rely on the
 :py:class:`LifecycleConfig` schema to do that for us*)

 args:
 config: A dictionary with `days` or `date`, and `storage_class`.

 returns:
 :py:class:`boto.s3.lifecycle.Transition`
 """
 self.log.debug('Generating transition config from: %s' % config)
 if 'days' in config:
 config['days'] = int(config['days'])
 return lifecycle.Transition(**config)

 @gen.coroutine
 def _get_bucket(self):
 """Retrives the existing S3 bucket object, or None.

 Returns either the S3 bucket or None if the bucket doesn't exist. Note,
 the boto.s3.lookup() method claims to do this, but has odd inconsistent
 behavior where it returns None very quickly sometimes. Also, it does
 not help us determine whether or not the bucket we find is in the
 target region we actually intended to use.

 Returns:
 <A Boto.s3.Bucket object> or None
 """
 try:
 bucket = yield self.thread(self.s3_conn.get_bucket,
 self.option('name'))
 except BotoServerError as e:
 if e.status == 301:
 raise exceptions.RecoverableActorFailure(
 'Bucket %s exists, but is not in %s' %
 (self.option('name'), self.option('region')))
 if e.status == 404:
 self.log.debug('No bucket %s found' % self.option('name'))
 raise gen.Return(None)

 raise exceptions.RecoverableActorFailure(
 'An unexpected error occurred: %s' % e)

 self.log.debug('Found bucket %s' % bucket)
 raise gen.Return(bucket)

 @gen.coroutine
 def _ensure_bucket(self):
 """Ensures a bucket exists or does not."""
 # Determine if the bucket already exists or not
 state = self.option('state')
 name = self.option('name')
 self.log.info('Ensuring that s3://%s is %s' % (name, state))
 bucket = yield self._get_bucket()

 if state == 'absent' and bucket is None:
 self.log.debug('Bucket does not exist')
 elif state == 'absent' and bucket:
 yield self._verify_can_delete_bucket(bucket=bucket)
 yield self._delete_bucket(bucket=bucket)
 bucket = None
 elif state == 'present' and bucket is None:
 bucket = yield self._create_bucket()
 elif state == 'present' and bucket:
 self.log.debug('Bucket exists')

 raise gen.Return(bucket)

 @gen.coroutine
 def _create_bucket(self):
 """Creates an S3 bucket if its missing.

 returns:
 <A boto.s3.Bucket object>
 """
 # If we're running in DRY mode, then we create a fake bucket object
 # that will be passed back. This mock object lets us simplify the rest
 # of our code because we can mock out the results of creating a fresh
 # empty bucket with no policies, versions, etc.
 if self._dry:
 self.log.warning('Would have created s3://%s' %
 self.option('name'))

 # Generate a fake bucket and return it
 mock_bucket = mock.MagicMock(name=self.option('name'))

 # Mock out the get_policy function to raise a 404 because there is
 # no policy attached to buckets by default. This is used to trick
 # the self._ensure_policy() function.
 mock_bucket.get_policy.side_effect = S3ResponseError(404, 'Empty')

 # Mock out the versioning config -- return an empty dict to
 # indicate there is no configuration.
 mock_bucket.get_versioning_config.return_value = {}

 # Raise a 404 (empty) because new buckets do not have lifecycle
 # policies attached.
 mock_bucket.get_lifecycle_config.side_effect = S3ResponseError(
 404, 'Empty')

 raise gen.Return(mock_bucket)

 # This throws no exceptions, even if the bucket exists, that we know
 # about or can expect.
 self.log.info('Creating bucket')
 bucket = yield self.thread(self.s3_conn.create_bucket,
 self.option('name'))
 raise gen.Return(bucket)

 @gen.coroutine
 def _verify_can_delete_bucket(self, bucket):
 # Find out if there are any files in the bucket before we go to delete
 # it. We cannot delete a bucket with files in it -- nor do we want to.
 keys = yield self.thread(bucket.get_all_keys)
 if len(keys) > 0:
 raise exceptions.RecoverableActorFailure(
 'Cannot delete bucket with keys: %s files found' % len(keys))

 @gen.coroutine
 @dry('Would have deleted bucket {bucket}')
 def _delete_bucket(self, bucket):
 """Tries to delete an S3 bucket.

 args:
 bucket: The S3 bucket object as returned by Boto
 """
 try:
 self.log.info('Deleting bucket %s' % bucket)
 yield self.thread(bucket.delete)
 except S3ResponseError as e:
 if e.status == 409:
 raise exceptions.RecoverableActorFailure(
 'Cannot delete bucket: %s' % e.message)

 @gen.coroutine
 def _ensure_policy(self, bucket):
 """Ensure the policy attached to the bucket is correct.

 (Note, this method is longer than we'd like .. but in this Bucket actor
 is going to do _a lot_ of things, so encapsulating the logic all in a
 single method makes the rest of the code easier to read and
 understand.)

 args:
 bucket: The S3 bucket object as returned by Boto
 """
 new = self.policy
 exist = {}

 # Get our existing policy and convert it into a dict we can deal with
 try:
 raw = yield self.thread(bucket.get_policy)
 exist = json.loads(raw)
 except S3ResponseError as e:
 if e.status != 404:
 raise exceptions.RecoverableActorFailure(
 'An unexpected error occurred: %s' % e)

 # Now, if we're deleting the policy (policy=''), then optionally do
 # that and bail.
 if new == '':
 if exist:
 yield self._delete_policy(bucket)
 raise gen.Return()

 # Now, diff our new policy from the existing policy. If there is no
 # difference, then we bail out of the method.
 diff = self._diff_policy_json(exist, new)
 if not diff:
 self.log.debug('Bucket policy matches')
 raise gen.Return()

 # Now, print out the diff..
 self.log.info('Bucket policy differs from Amazons:')
 for line in diff.split('\n'):
 self.log.info('Diff: %s' % line)

 # Push the new policy!
 yield self._set_policy(bucket)

 @gen.coroutine
 @dry('Would delete bucket policy')
 def _delete_policy(self, bucket):
 """Deletes a Bucket Policy.

 args:
 bucket: :py:class:`~boto.s3.bucket.Bucket`
 """
 self.log.info('Deleting bucket policy')
 try:
 yield self.thread(bucket.delete_policy)
 except S3ResponseError as e:
 raise exceptions.RecoverableActorFailure(
 'An unexpected error occurred: %s' % e)

 @gen.coroutine
 @dry('Would have pushed bucket policy')
 def _set_policy(self, bucket):
 """Sets a Bucket policy.

 args:
 bucket: :py:class:`~boto.s3.bucket.Bucket`
 """
 self.log.info('Pushing bucket policy %s' % self.option('policy'))
 self.log.debug('Policy doc: %s' % self.policy)
 try:
 yield self.thread(bucket.set_policy, json.dumps(self.policy))
 except S3ResponseError as e:
 if e.error_code == 'MalformedPolicy':
 raise base.InvalidPolicy(e.message)

 raise exceptions.RecoverableActorFailure(
 'An unexpected error occurred: %s' % e)

 @gen.coroutine
 def _ensure_logging(self, bucket):
 """Ensure that the bucket logging configuration is setup.

 args:
 bucket: The S3 bucket object as returned by Boto
 """
 # Get the buckets current logging configuration
 existing = yield self.thread(bucket.get_logging_status)

 # Shortcuts for our desired logging state
 desired = self.option('logging')

 # If desired is False, check the state, potentially disable it, and
 # then bail out.
 if desired['target'] == '':
 if existing.target is None:
 raise gen.Return()
 yield self._disable_logging(bucket)
 raise gen.Return()

 # If desired has a logging or prefix config, check each one and
 # validate that they are correct.
 if (desired['target'] != existing.target or
 desired['prefix'] != existing.prefix):
 yield self._enable_logging(bucket, **desired)

 @gen.coroutine
 @dry('Bucket logging would have been disabled')
 def _disable_logging(self, bucket):
 """Disables logging on a bucket.

 args:
 bucket: :py:class`~boto.s3.bucket.Bucket`
 """
 self.log.info('Deleting Bucket logging configuration')
 yield self.thread(bucket.disable_logging)

 @gen.coroutine
 @dry('Bucket logging config would be updated to {target}/{prefix}')
 def _enable_logging(self, bucket, target, prefix):
 """Enables logging on a bucket.

 args:
 bucket: :py:class:`~boto.s3.bucket.Bucket`
 target: Target S3 bucket
 prefix: Target S3 bucket prefix
 """
 target_str = 's3://%s/%s' % (target, prefix.lstrip('/'))
 self.log.info('Updating Bucket logging config to %s' % target_str)

 try:
 yield self.thread(bucket.enable_logging, target, prefix)
 except S3ResponseError as e:
 if e.error_code == 'InvalidTargetBucketForLogging':
 raise InvalidBucketConfig(e.message)
 raise exceptions.RecoverableActorFailure(
 'An unexpected error occurred. %s' % e)

 @gen.coroutine
 def _ensure_versioning(self, bucket):
 """Enables or suspends object versioning on the bucket.

 args:
 bucket: The S3 bucket object as returned by Boto
 """
 # Get the buckets current versioning status
 existing = yield self.thread(bucket.get_versioning_status)

 # Shortcuts for our desired state
 desired = self.option('versioning')

 if not desired:
 # If desired is False, check the state, potentially disable it, and
 # then bail out.
 if ('Versioning' not in existing or
 existing['Versioning'] == 'Suspended'):
 self.log.debug('Versioning is already disabled.')
 raise gen.Return()
 yield self._disable_versioning(bucket)
 else:
 # If desired is True, check the state, potentially enable it, and
 # bail.
 if ('Versioning' in existing and
 existing['Versioning'] == 'Enabled'):
 self.log.debug('Versioning is already enabled.')
 raise gen.Return()

 yield self._enable_versioning(bucket)

 @gen.coroutine
 @dry('Bucket versioning would be suspended')
 def _disable_versioning(self, bucket):
 """Disables Bucket Versioning.

 args:
 bucket: :py:class:`~boto.s3.bucket.Bucket`
 """
 self.log.info('Suspending bucket versioning.')
 yield self.thread(bucket.configure_versioning, False)

 @gen.coroutine
 @dry('Would enable bucket versioning')
 def _enable_versioning(self, bucket):
 """Enables Bucket Versioning.

 args:
 bucket: :py:class:`~boto.s3.bucket.Bucket`
 """
 self.log.info('Enabling bucket versioning.')
 yield self.thread(bucket.configure_versioning, True)

 @gen.coroutine
 def _ensure_lifecycle(self, bucket):
 """Ensures that the Bucket Lifecycle configuration is in place.

 args:
 bucket: A :py:class:`boto.s3.Bucket` object
 """
 try:
 existing = yield self.thread(bucket.get_lifecycle_config)
 except S3ResponseError as e:
 if e.status != 404:
 raise exceptions.RecoverableActorFailure(
 'An unexpected error occurred. %s' % e)
 existing = None

 # Simple check -- are we deleting the lifecycle? Do it.
 if self.lifecycle is None:
 if existing is None:
 self.log.debug('No existing lifecycle configuration found.')
 raise gen.Return()
 yield self._delete_lifecycle(bucket)
 raise gen.Return()

 # Next simple check -- if we're pushing a new config, and the old
 # config is empty (there was none), then just go and push it.
 if existing is None:
 yield self._configure_lifecycle(bucket=bucket,
 lifecycle=self.lifecycle)
 raise gen.Return()

 # Now sort through the existing Lifecycle configuration and the one
 # that we've built locally. If there are any differences, we're going
 # to push an all new config.
 diff = self._diff_policy_json(
 json.loads(jsonpickle.encode(existing)),
 json.loads(jsonpickle.encode(self.lifecycle)))
 if diff:
 self.log.info('Lifecycle configurations do not match. Updating.')
 for line in diff.split('\n'):
 self.log.info('Diff: %s' % line)
 yield self._configure_lifecycle(bucket=bucket,
 lifecycle=self.lifecycle)

 @gen.coroutine
 @dry('Would have deleted the existing lifecycle configuration')
 def _delete_lifecycle(self, bucket):
 self.log.info('Deleting the existing lifecycle configuration.')
 yield self.thread(bucket.delete_lifecycle_configuration)

 @gen.coroutine
 @dry('Would have pushed this lifecycle configuration: {lifecycle}')
 def _configure_lifecycle(self, bucket, lifecycle):
 self.log.debug('Lifecycle config: %s' %
 jsonpickle.encode(lifecycle))

 self.log.info('Updating the Bucket Lifecycle config')
 try:
 yield self.thread(bucket.configure_lifecycle, lifecycle)
 except S3ResponseError as e:
 raise InvalidBucketConfig('Invalid Lifecycle Configuration: %s'
 % e.message)

 @gen.coroutine
 def _execute(self):
 """Executes an actor and yields the results when its finished.

 raises: gen.Return(True)
 """
 bucket = yield self._ensure_bucket()

 # If we're deleting the bucket, then there is no need to continue after
 # we've done that.
 if self.option('state') == 'absent':
 raise gen.Return()

 # Only manage the policy if self.policy was actually set.
 if self.policy is not None:
 yield self._ensure_policy(bucket)

 # Only manage the logging config if the logging config was supplied
 if self.option('logging') is not None:
 yield self._ensure_logging(bucket)

 # Only manage versioning if a config was supplied
 if self.option('versioning') is not None:
 yield self._ensure_versioning(bucket)

 # Only manage the lifecycle configuration if one was supplied
 if self.option('lifecycle') is not None:
 yield self._ensure_lifecycle(bucket)

 raise gen.Return()

 © Copyright 2015, Nextdoor.
 Created using Sphinx 1.4.

_modules/kingpin/actors/aws/settings.html

 Navigation

 		
 index

 		
 modules |

 		Kingpin 0.4.0 documentation »

 		Module code »

 Source code for kingpin.actors.aws.settings

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#
Copyright 2014 Nextdoor.com, Inc

"""
:mod:`kingpin.actors.aws.settings`
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Common settings used by many of the `kingpin.actors.aws` modules.
"""

import os

import boto

__author__ = 'Mikhail Simin <mikhail@nextdoor.com>'

By default, this means that Boto will make HTTP calls at instantiation time
to determine whether or not credentials are available from the metadata
service.
#
During tests, we mock these out to blank strings to prevent these calls.
AWS_ACCESS_KEY_ID = os.getenv('AWS_ACCESS_KEY_ID', None)
AWS_SECRET_ACCESS_KEY = os.getenv('AWS_SECRET_ACCESS_KEY', None)

SQS_RETRY_DELAY = 30

Common Settings for the retrying.retry() decorator
#
Use like this: @retrying.retry(**settings.RETRYING_SETTINGS)
#
[docs]def is_retriable_exception(exception):
 """Return true if this AWS exception is transient and should be retried.

 Example:
 >>> @retry(retry_on_exception=is_retriable_exception)
 """
 retry_codes = (
 'Throttling',
)

 # Only handle Boto exceptions
 if not isinstance(exception, boto.exception.BotoServerError):
 return False

 # Boto exceptions should have a code attribute
 return exception.error_code in retry_codes

RETRYING_SETTINGS = {
 # Verify if we need to retry with the is_retriable_exception
 # method described above.
 'retry_on_exception': is_retriable_exception,

 # Wait up to 10 times
 'stop_max_attempt_number': 10,

 # Add 250ms of random jitter to every retry
 'wait_jitter_max': 250,

 # Add 250ms of sleep to every retry
 'wait_fixed': 250,

 # Now add between 250-2000ms to every retry
 'wait_random_min': 250,
 'wait_random_max': 2000,

 # Finally, add in an exponential backoff timer with a 10s limit
 'wait_exponential_multiplier': 100,
 'wait_exponential_max': 10000
}

 © Copyright 2015, Nextdoor.
 Created using Sphinx 1.4.

_modules/kingpin/actors/support/api.html

 Navigation

 		
 index

 		
 modules |

 		Kingpin 0.4.0 documentation »

 		Module code »

 Source code for kingpin.actors.support.api

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#
Copyright 2014 Nextdoor.com, Inc
"""
This package provides a quick way of creating custom API clients for JSON-based
REST APIs. The majority of the work is in the creation of a _CONFIG dictionary
for the class. This dictionary dynamically configures the object at
instantiation time with the appropriate @gen.coroutine wrapped HTTP fetch
methods.

See the documentation in docs/DEVELOPMENT.md for more details on how to use
this package to create your own API client.
"""

import logging
import types
import urllib

from tornado import gen
from tornado import httpclient
from tornado import httputil
import simplejson as json

from kingpin import utils
from kingpin.actors import exceptions

log = logging.getLogger(__name__)

__author__ = 'Matt Wise <matt@nextdoor.com>'

def _retry(*f_or_args, **options):
 """Coroutine-compatible Retry Decorator.

 This decorator provides a simple retry mechanism that compares the
 exceptions it received against a configuration list (self._EXCEPTIONS), and
 then performs the action defined in that list. For example, an HTTPError
 with a '500' code might want to retry 3 times. On the otherhand, a 401/403
 might want to throw an InvalidCredentials exception.

 Examples:

 >>> @_retry
 def some_func(self):
 yield ...

 >>> @_retry(retries=5):
 def some_func(self):
 yield ...

 """

 # Defaults...
 retries = 3
 delay = 0.25

 # Have to determine if invoked as @_retry or @_retry()
 if len(f_or_args) == 1 and callable(f_or_args[0]):
 # Decorator invoked as @_retry
 _call_with_args = False
 else:
 # Decorator invoked as @_retry(args...)
 # `f` is unknown for now
 _call_with_args = True
 retries = options.pop('retries', retries)
 delay = options.pop('delay', delay)

 def decorator(f_or_self, *args, **kwargs):
 # Depending on how this decorator is invoked
 # The first argument is either the function, or the `self` object
 if not _call_with_args:
 self = f_or_self
 f = f_or_args[0]
 else:
 f = f_or_self

 def wrapper(self, *args, **kwargs):
 i = 1

 # Get a list of private kwargs to mask
 private_kwargs = getattr(self, '_private_kwargs', [])

 # For security purposes, create a patched kwargs string that
 # removes passwords from the arguments. This is never guaranteed to
 # work (an API could have 'foo' as their password field, and we
 # just won't know ...), but we make a best effort here.
 safe_kwargs = dict(kwargs)
 remove = [k for k in safe_kwargs if k in private_kwargs]
 for k in remove:
 safe_kwargs[k] = '****'

 while True:
 # Don't log out the first try as a 'Try' ... just do it
 if i > 1:
 log.debug('Try (%s/%s) of %s(%s, %s)' %
 (i, retries, f, args, safe_kwargs))

 # Attempt the method. Catch any exception listed in
 # self._EXCEPTIONS.

 try:
 ret = yield gen.coroutine(f)(self, *args, **kwargs)
 raise gen.Return(ret)
 except tuple(self._EXCEPTIONS.keys()) as e:
 error = str(e)
 if hasattr(e, 'message'):
 error = e.message
 log.warning('Exception raised on try %s: %s' % (i, error))

 # If we've run out of retry attempts, raise the exception
 if i >= retries:
 log.debug('Raising exception: %s' % e)
 raise e

 # Gather the config for this exception-type from
 # self._EXCEPTIONS. Iterate through the data and see if we
 # have a matching exception string.
 exc_conf = self._EXCEPTIONS[type(e)].copy()

 # An empty string for the key is the default exception
 # It's optional, but can match before others match, so we
 # pop it before searching.
 default_exc = exc_conf.pop('', False)
 log.debug('Searching through %s' % exc_conf)
 matched_exc = [exc for key, exc in exc_conf.items()
 if key in str(e)]

 log.debug('Matched exceptions: %s' % matched_exc)
 if matched_exc and matched_exc[0] is not None:
 exception = matched_exc[0]
 log.debug('Matched exception: %s' % exception)
 raise exception(error)
 elif matched_exc and matched_exc[0] is None:
 log.debug('Exception is retryable!')
 pass
 elif default_exc is not False:
 raise default_exc(str(e))
 elif default_exc is False:
 # Reaching this part means no exception was matched
 # and no default was specified.
 log.debug('No explicit behavior for this exception'
 ' found. Raising.')
 raise e

 # Must have been a retryable exception. Retry.
 i = i + 1
 log.debug('Retrying in %s...' % delay)
 yield utils.tornado_sleep(delay)

 log.debug('Retrying..')

 if not _call_with_args:
 # Invoked as @_retry
 # Should return the evaluated run
 return wrapper(self, *args, **kwargs)
 else:
 # Invoked as @_retry(args...)
 # Return a wrapper that expects all the new args
 return wrapper

 return decorator

[docs]def create_http_method(name, http_method):
 """Creates the get/put/delete/post coroutined-method for a resource.

 This method is called during the __init__ of a RestConsumer object. The
 method creates a custom method thats handles a GET, PUT, POST or DELETE
 through the Tornado HTTPClient class.

 Args:
 http_method: Name of the method (get, put, post, delete)

 Returns:
 A method appropriately configured and named.
 """

 @gen.coroutine
 def method(self, *args, **kwargs):
 # We don't support un-named args. Throw an exception.
 if args:
 raise exceptions.InvalidOptions('Must pass named-args (kwargs)')

 ret = yield self._client.fetch(
 url='%s%s' % (self._ENDPOINT, self._path),
 method=http_method.upper(),
 params=kwargs,
 auth_username=self._CONFIG.get('auth', {}).get('user'),
 auth_password=self._CONFIG.get('auth', {}).get('pass')
)
 raise gen.Return(ret)

 method.__name__ = http_method
 return method

[docs]def create_method(name, config):
 """Creates a RestConsumer object.

 Configures a fresh RestConsumer object with the supplied configuration
 bits. The configuration includes information about the name of the method
 being consumed and the configuration of that method (which HTTP methods it
 supports, etc).

 The final created method accepts any args (`*args, **kwargs`) and passes
 them on to the RestConsumer object being created. This allows for passing
 in unique resource identifiers (ie, the '%res%' in
 '/v2/rooms/%res%/history').

 Args:
 name: The name passed into the RestConsumer object
 config: The config passed into the RestConsumer object

 Returns:
 A method that returns a fresh RestConsumer object
 """

 def method(self, *args, **kwargs):
 # Merge the supplied kwargs to the method with any kwargs supplied to
 # the RestConsumer parent object. This ensures that tokens replaced in
 # the 'path' variables are passed all the way down the instantiation
 # chain.
 merged_kwargs = dict(self._kwargs.items() + kwargs.items())

 return self.__class__(
 name=name,
 config=self._attrs[name],
 client=self._client,
 *args, **merged_kwargs)

 method.__name__ = name
 return method

[docs]class RestConsumer(object):

 """An abstract object that self-defines its own API access methods.

 At init time, this object reads its `_CONFIG` and pre-defines all of the
 API access methods that have been described. It does not handle actual HTTP
 calls directly, but is passed in a `client` object (anything that
 subclasses the RestClient class) and leverages that for the actual web
 calls.
 """

 _CONFIG = {}
 _ENDPOINT = None

 def __init__(self, name=None, config=None, client=None, *args, **kwargs):
 """Initialize the RestConsumer object.

 The generic RestConsumer object (with no parameters passed in) looks at
 the self.__class__._CONFIG dictionary and dynamically generates access
 methods for the various API methods.

 The GET, PUT, POST and DELETE methods optionally listed in
 CONFIG['http_methods'] represent the possible types of HTTP methods
 that the CONFIG['path'] supports. For each one of these listed, a
 @coroutine wrapped get/put/post/delete() method will be created in the
 RestConsumer that knows how to make the HTTP request.

 For each item listed in CONFIG['attrs'], an access method is created
 that will dynamically create and return a new RestConsumer object thats
 configured for this endpoint. These methods are not asynchronous, but
 are non-blocking.

 Args:
 name: Name of the resource method (default: None)
 config: The dictionary object with the configuration for this API
 endpoint call.
 client: <TBD>
 *args,**kwargs: <TBD>
 """
 # If these aren't passed in, then get them from the class definition
 name = name or self.__class__.__name__
 config = config or self._CONFIG

 # Get the basic options for this particular REST endpoint access object
 self._path = config.get('path', None)
 self._http_methods = config.get('http_methods', None)
 self._attrs = config.get('attrs', None)
 self._kwargs = kwargs

 # If no client was supplied, then we
 self._client = client or RestClient()

 # Ensure that any tokens that need filling-in in the self._path setting
 # are pulled from the **kwargs passed into this init. This is used on
 # API paths like Hipchats '/v2/room/%(res)/...' URLs.
 self._path = self._replace_path_tokens(self._path, kwargs)

 # Create all of the methods based on the self._http_methods and
 # self._attrs dict.
 self._create_methods()
 self._create_attrs()

 # Log some things
 log.debug('%s/%s initialized' %
 (self.__class__.__name__, self._client))

 def __repr__(self):
 return '%s(%s)' % (self.__class__.__name__, self)

 def __str__(self):
 return str(self._path)

 def _replace_path_tokens(self, path, tokens):
 """Search and replace %xxx% with values from tokens.

 Used to replace any values of %xxx% with 'xxx' from tokens. Can replace
 one, or many fields at aonce.

 Args:
 path: String of the path
 tokens: A dictionary of tokens to search through.

 Returns:
 path: A modified string
 """
 if not path:
 return

 try:
 path = utils.populate_with_tokens(path, tokens)
 except LookupError as e:
 msg = 'Path (%s), tokens: (%s) error: %s' % (path, tokens, e)
 raise TypeError(msg)

 return path

 def _create_methods(self):
 """Create @gen.coroutine wrapped HTTP methods.

 Iterates through the methods described in self._methods and creates
 @gen.coroutine wrapped access methods that perform these actions.
 """
 if not self._http_methods:
 return

 for name in self._http_methods.keys():
 full_method_name = 'http_%s' % name
 method = create_http_method(full_method_name, name)
 setattr(self,
 full_method_name,
 types.MethodType(method, self, self.__class__))

 def _create_attrs(self):
 """Creates access methods to the attributes in self._attrs.

 Iterates through the attributes described in self._attrs and creates
 access methods that return RestConsumer objects for those attributes.
 """
 if not self._attrs:
 return

 for name in self._attrs.keys():
 method = create_method(name, self._attrs[name])
 setattr(self, name, types.MethodType(method, self, self.__class__))

[docs]class RestClient(object):

 """Very simple REST client for the RestConsumer. Implements a
 AsyncHTTPClient(), some convinience methods for URL escaping, and a single
 fetch() method that can handle GET/POST/PUT/DELETEs.

 This code is nearly identical to the kingpin.actors.base.BaseHTTPActor
 class, but is not actor-specific.

 Args:
 headers: Headers to pass in on every HTTP request
 """

 _EXCEPTIONS = {
 httpclient.HTTPError: {
 '401': exceptions.InvalidCredentials,
 '403': exceptions.InvalidCredentials,
 '500': None,
 '502': None,
 '503': None,
 '504': None,

 # Rrepresents a standard HTTP Timeout
 '599': None,

 '': exceptions.RecoverableActorFailure,
 }
 }

 def __init__(self, client=None, headers=None):
 self._client = client or httpclient.AsyncHTTPClient()
 self._private_kwargs = ['auth_password']
 self.headers = headers

 def _generate_escaped_url(self, url, args):
 """Takes in a dictionary of arguments and returns a URL line.

 Sorts the arguments so that the returned string is predictable and in
 alphabetical order. Effectively wraps the tornado.httputil.url_concat
 method and properly strips out None values, as well as lowercases
 Bool values.

 Args:
 url: (Str) The URL to append the arguments to
 args: (Dict) Key/Value arguments. Values should be primitives.

 Returns:
 A URL encoded string like this: <url>?foo=bar&abc=xyz
 """

 # Remove keys from the arguments where the value is None
 args = dict((k, v) for k, v in args.iteritems() if v)

 # Convert all Bool values to lowercase strings
 for key, value in args.iteritems():
 if type(value) is bool:
 args[key] = str(value).lower()

 # Now generate the URL
 full_url = httputil.url_concat(url, sorted(args.items()))
 log.debug('Generated URL: %s' % full_url)

 return full_url

 # TODO: Add a retry/backoff timer here. If the remote endpoint returns
 # garbled data (ie, maybe a 500 errror or something else thats not in
 # JSON format, we should back off and try again.
 @gen.coroutine
 @_retry
 def fetch(self, url, method, params={},
 auth_username=None, auth_password=None):
 """Executes a web request asynchronously and yields the body.

 Args:
 url: (Str) The full url path of the API call
 params: (Dict) Arguments (k/v pairs) to submit either as POST data
 or URL argument options.
 method: (Str) GET/PUT/POST/DELETE
 auth_username: (str) HTTP auth username
 auth_password: (str) HTTP auth password
 """

 # Start with empty post data. If we're doing a PUT/POST, then just pass
 # args directly into the ch() method and let it take care of
 # things. If we're doing a GET/DELETE though, convert kwargs into a
 # modified URL string and pass that into the fetch() method.
 body = None
 if method in ('PUT', 'POST'):
 body = urllib.urlencode(params) or None
 elif method in ('GET', 'DELETE') and params:
 url = self._generate_escaped_url(url, params)

 # Generate the full request URL and log out what we're doing...
 log.debug('Making %s request to %s. Data: %s' % (method, url, body))

 # Create the http_request object
 http_request = httpclient.HTTPRequest(
 url=url,
 method=method,
 body=body,
 headers=self.headers,
 auth_username=auth_username,
 auth_password=auth_password,
 follow_redirects=True,
 max_redirects=10)

 # Execute the request and raise any exception. Exceptions are not
 # caught here because they are unique to the API endpoints, and thus
 # should be handled by the individual Actor that called this method.
 log.debug('HTTP Request: %s' % http_request)
 try:
 http_response = yield self._client.fetch(http_request)
 except httpclient.HTTPError as e:
 log.critical('Request for %s failed: %s' % (url, e))
 raise
 log.debug('HTTP Response: %s' % http_response.body)

 try:
 body = json.loads(http_response.body)
 except ValueError:
 raise gen.Return(http_response.body)

 # Receive a successful return
 raise gen.Return(body)

[docs]class SimpleTokenRestClient(RestClient):

 """Simple RestClient that appends a 'token' to every web request for
 authentication. Used in most simple APIs where a token is provided to the
 end user.

 Args:
 tokens: (dict) A dict with the token name/value(s) to append to every
 we request.
 """

 def __init__(self, tokens, *args, **kwargs):
 super(SimpleTokenRestClient, self).__init__(*args, **kwargs)
 self._tokens = tokens
 for key in tokens.keys():
 self._private_kwargs.append(key)

 @gen.coroutine
 def fetch(self, *args, **kwargs):
 if 'params' not in kwargs:
 kwargs['params'] = {}

 kwargs['params'].update(self._tokens)
 ret = yield super(SimpleTokenRestClient, self).fetch(*args, **kwargs)
 raise gen.Return(ret)

 © Copyright 2015, Nextdoor.
 Created using Sphinx 1.4.

_modules/kingpin/actors/rightscale/server_array.html

 Navigation

 		
 index

 		
 modules |

 		Kingpin 0.4.0 documentation »

 		Module code »

 Source code for kingpin.actors.rightscale.server_array

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#
Copyright 2014 Nextdoor.com, Inc

"""
:mod:`kingpin.actors.rightscale.server_array`
^^^

.. _ResourceInstances:
 http://reference.rightscale.com/api1.5/resources/
 ResourceInstances.html#update
"""

import logging

from tornado import gen
import mock
import requests

from kingpin import utils
from kingpin.actors import exceptions
from kingpin.actors.rightscale import api
from kingpin.actors.rightscale import base
from kingpin.constants import REQUIRED

log = logging.getLogger(__name__)

__author__ = 'Matt Wise <matt@nextdoor.com>'

[docs]class InvalidInputs(exceptions.InvalidOptions):

 """Raised when supplied inputs are invalid for a ServerArray."""

[docs]class TaskExecutionFailed(exceptions.RecoverableActorFailure):

 """Raised when one or more RightScale Task executions fail."""

[docs]class ServerArrayBaseActor(base.RightScaleBaseActor):

 """Abstract ServerArray Actor that provides some utility methods."""

 @gen.coroutine
 def _apply(self, function, arrays, *args, **kwargs):
 """Yield a function on several arrays at once.

 Many of our rightscale.server_array Actors have the ability to act on
 multiple arrays at a time (through the 'exact=False' parameter). This
 method provides a quick and re-usable method for yielding generators on
 an array (or group of arrays). All we do here is queue up a group of
 functions, yield them all at once, and return.

 args:
 function: Reference to the function to execute
 arrays: An array, or list of arrays to execute on.
 *args: Any *args to pass to the function
 **kwargs: Any **kwargs to pass to the function
 """
 if not isinstance(arrays, list):
 arrays = [arrays]

 tasks = []
 for array in arrays:
 self.log.debug('Adding %s(%s, %s, %s) to async call list' %
 (function.__name__, array.soul['name'],
 args, kwargs))
 tasks.append(function(array, *args, **kwargs))

 self.log.debug('Calling all functions in async call list')
 ret = yield tasks
 raise gen.Return(ret)

[docs]class Clone(ServerArrayBaseActor):

 """Clones a RightScale Server Array.

 Clones a ServerArray in RightScale and renames it to the newly supplied
 name. By default, this actor is extremely strict about validating that the
 ``source`` array already exists, and that the ``dest`` array does not yet
 exist. This behavior can be overridden though if your Kingpin script
 creates the ``source``, or destroys an existing ``dest`` ServerArray
 sometime before this actor executes.

 Options

 :source:
 The name of the ServerArray to clone

 :strict_source:
 Whether or not to fail if the source ServerArray does not exist.
 (default: True)

 :dest:
 The new name for your cloned ServerArray

 :strict_dest:
 Whether or not to fail if the destination ServerArray already exists.
 (default: True)

 Examples

 Clone my-template-array to my-new-array:

 .. code-block:: json

 { "desc": "Clone my array",
 "actor": "rightscale.server_array.Clone",
 "options": {
 "source": "my-template-array",
 "dest": "my-new-array"
 }
 }

 Clone an array that was created sometime earlier in the Kingpin JSON,
 and thus does not exist yet during the dry run:

 .. code-block:: json

 { "desc": "Clone that array we created earlier",
 "actor": "rightscale.server_array.Clone",
 "options": {
 "source": "my-template-array",
 "strict_source": false,
 "dest": "my-new-array"
 }
 }

 Clone an array into a destination name that was destroyed sometime
 earlier in the Kingpin JSON:

 .. code-block:: json

 { "desc": "Clone that array we created earlier",
 "actor": "rightscale.server_array.Clone",
 "options": {
 "source": "my-template-array",
 "dest": "my-new-array",
 "strict_dest": false,
 }
 }

 Dry Mode

 In Dry mode this actor *does* validate that the ``source`` array exists. If
 it does not, a `kingpin.actors.rightscale.api.ServerArrayException` is
 thrown. Once that has been validated, the dry mode execution pretends to
 copy the array by creating a mocked cloned array resource. This mocked
 resource is then operated on during the rest of the execution of the actor,
 guaranteeing that no live resources are modified.

 Example *dry* output::

 [Copy Test (DRY Mode)] Verifying that array "temp" exists
 [Copy Test (DRY Mode)] Verifying that array "new" does not exist
 [Copy Test (DRY Mode)] Cloning array "temp"
 [Copy Test (DRY Mode)] Renaming array "<mocked clone of temp>" to "new"
 """

 all_options = {
 'source': (str, REQUIRED, 'Name of the ServerArray to clone.'),
 'strict_source': (bool, True, 'Strict Source ServerArray validation.'),
 'strict_dest': (bool, True, 'Strict Dest ServerArray validation.'),
 'dest': (str, REQUIRED, 'Name to give the cloned ServerArray.')
 }

 def __init__(self, *args, **kwargs):
 """Validate the user-supplied parameters at instantiation time."""
 super(Clone, self).__init__(*args, **kwargs)
 # By default, we're strict on our source/dest array validation
 self._source_raise_on = 'notfound'
 self._source_allow_mock = False
 self._dest_raise_on = 'found'
 self._dest_allow_mock = False

 if not self.option('strict_source'):
 self._source_raise_on = None
 self._source_allow_mock = True

 if not self.option('strict_dest'):
 self._dest_raise_on = None
 self._dest_allow_mock = True

 @gen.coroutine
 def _execute(self):
 # Find the array we're copying from
 source_array = yield self._find_server_arrays(
 self.option('source'),
 raise_on=self._source_raise_on,
 allow_mock=self._source_allow_mock)

 # Sanity-check -- make sure that the destination server array doesn't
 # already exist. If it does, bail out!
 yield self._find_server_arrays(
 self.option('dest'),
 raise_on=self._dest_raise_on,
 allow_mock=self._dest_allow_mock)

 # Now, clone the array!
 self.log.info('Cloning array "%s"' % source_array.soul['name'])
 if not self._dry:
 # We're really doin this!
 new_array = yield self._client.clone_server_array(source_array)
 else:
 # In dry run mode. Don't really clone the array, instead we create
 # a mock object and pass that back as if its the new array.
 new_array = mock.MagicMock(name=self.option('dest'))
 new_array_name = '<mocked clone of %s>' % self.option('source')
 new_array.soul = {'name': new_array_name}

 # Lastly, rename the array
 params = self._generate_rightscale_params(
 'server_array', {'name': self.option('dest')})
 self.log.info('Renaming array "%s" to "%s"' % (new_array.soul['name'],
 self.option('dest')))
 yield self._client.update(new_array, params)
 raise gen.Return()

[docs]class Update(ServerArrayBaseActor):

 """Update ServerArray Settings

 Updates an existing ServerArray in RightScale with the supplied parameters.
 Can update any parameter that is described in the RightScale API docs here:

 Parameters are passed into the actor in the form of a dictionary, and are
 then converted into the RightScale format. See below for examples.

 Options

 :array:
 (str) The name of the ServerArray to update

 :exact:
 (bool) whether or not to search for the exact array name.
 (default: `true`)

 :params:
 (dict) Dictionary of parameters to update

 :inputs:
 (dict) Dictionary of next-instance server arryay inputs to update

 Examples

 .. code-block:: json

 { "desc": "Update my array",
 "actor": "rightscale.server_array.Update",
 "options": {
 "array": "my-new-array",
 "params": {
 "elasticity_params": {
 "bounds": {
 "min_count": 4
 },
 "schedule": [
 {"day": "Sunday", "max_count": 2,
 "min_count": 1, "time": "07:00" },
 {"day": "Sunday", "max_count": 2,
 "min_count": 2, "time": "09:00" }
]
 },
 "name": "my-really-new-name"
 }
 }
 }

 .. code-block:: json

 { "desc": "Update my array inputs",
 "actor": "rightscale.server_array.Update",
 "options": {
 "array": "my-new-array",
 "inputs": {
 "ELB_NAME": "text:foobar"
 }
 }
 }

 Dry Mode

 In Dry mode this actor *does* search for the ``array``, but allows it to be
 missing because its highly likely that the array does not exist yet. If the
 array does not exist, a mocked array object is created for the rest of the
 execution.

 During the rest of the execution, the code bypasses making any real changes
 and just tells you what changes it would have made.

 *This means that the dry mode cannot validate that the supplied inputs will
 work.*

 Example *dry* output::

 [Update Test (DRY Mode)] Verifying that array "new" exists
 [Update Test (DRY Mode)] Array "new" not found -- creating a mock.
 [Update Test (DRY Mode)] Would have updated "<mocked array new>" with
 params: {'server_array[name]': 'my-really-new-name',
 'server_array[elasticity_params][bounds][min_count]': '4'}
 """

 all_options = {
 'array': (str, REQUIRED, 'ServerArray name to Update'),
 'exact': (bool, True, (
 'Whether to search for multiple ServerArrays and act on them.')),
 'params': (dict, {}, 'ServerArray RightScale parameters'),
 'inputs': (dict, {}, 'ServerArray inputs for launching.')
 }

 def __init__(self, *args, **kwargs):
 """Validate the user-supplied parameters at instantiation time."""
 super(Update, self).__init__(*args, **kwargs)
 self._params = self._generate_rightscale_params(
 'server_array', self.option('params'))
 self._inputs = self._generate_rightscale_params(
 'inputs', self.option('inputs'))

 @gen.coroutine
 def _check_array_inputs(self, array, inputs):
 """Checks the inputs supplied against the ServerArray being updated.

 Verifies that the supplied inputs are actually found in the ServerArray
 that we are going to be updating.

 Raises:
 InvalidInputs()
 """
 # Quick sanity check, make sure we weren't handed a mock object created
 # by the _find_server_array() method. If we were, then the inputs are
 # not checkable. Just warn, and move on.
 if 'fake' in array.soul:
 self.log.warning('Cannot check inputs for non-existent array.')
 raise gen.Return()

 all_inputs = yield self._client.get_server_array_inputs(array)
 all_input_names = [i.soul['name'] for i in all_inputs]

 success = True
 for input_name, _ in inputs.items():
 # Inputs have to be there. If not -- it's a problem.
 if input_name not in all_input_names:
 self.log.error('Input not found: "%s"' % input_name)
 success = False

 if not success:
 raise InvalidInputs('Some inputs supplied were incorrect.')

 raise gen.Return()

 @gen.coroutine
 def _update_params(self, array):
 """Update the parameters on a RightScale ServerArray.

 args:
 array: The array to operate on
 """

 if not self.option('params'):
 raise gen.Return()

 self.log.info('Updating array "%s" with params: %s' %
 (array.soul['name'], self._params))
 try:
 yield self._client.update(array, self._params)
 except requests.exceptions.HTTPError as e:
 if e.response.status_code in (422, 400):
 msg = ('Invalid parameters supplied to patch array "%s"' %
 self.option('array'))
 raise exceptions.RecoverableActorFailure(msg)

 raise

 raise gen.Return()

 @gen.coroutine
 def _update_inputs(self, array):
 """Update the inputs on a RightScale ServerArray.

 args:
 array: rightscale.Resource ServerArray Object
 """

 if not self.option('inputs'):
 raise gen.Return()

 self.log.info('Updating array "%s" with inputs: %s' %
 (array.soul['name'], self._inputs))
 yield self._client.update_server_array_inputs(array, self._inputs)

 @gen.coroutine
 def _execute(self):
 # First, find the arrays we're going to be patching.
 arrays = yield self._find_server_arrays(
 self.option('array'), exact=self.option('exact'))

 # In dry run, just comment that we would have made the change.
 if self._dry:
 self.log.debug('Not making any changes.')
 if self.option('params'):
 self.log.info('Params would be: %s' % self.option('params'))
 if self.option('inputs'):
 self.log.info('Inputs would be: %s' % self.option('inputs'))
 yield self._apply(self._check_array_inputs,
 arrays, self.option('inputs'))

 raise gen.Return()

 # Do the real work
 yield self._apply(self._update_params, arrays)
 yield self._apply(self._update_inputs, arrays)
 raise gen.Return()

[docs]class UpdateNextInstance(ServerArrayBaseActor):

 """Update the Next Instance parameters for a Server Array

 Updates an existing ServerArray in RightScale with the supplied parameters.
 Can update any parameter that is described in the RightScale
 `ResourceInstances`_ docs.

 Note about the image_href parameter

 If you pass in the string `default` to the `image_href` key in your
 `params` dictionary, we will search and find the default image that your
 ServerArray's Multi Cloud Image refers to. This helper is useful if you
 update your ServerArrays to use custom AMIs, and then occasionally want to
 go back to using a stock AMI. For example, if you boot up your instances
 occasionally off a stock AMI, customize the host, and then bake that host
 into a custom AMI.

 Parameters are passed into the actor in the form of a dictionary, and are
 then converted into the RightScale format. See below for examples.

 Options

 :array:
 (str) The name of the ServerArray to update

 :exact:
 (bool) whether or not to search for the exact array name.
 (default: `true`)

 :params:
 (dict) Dictionary of parameters to update

 Examples

 .. code-block:: json

 { "desc": "Update my array",
 "actor": "rightscale.server_array.UpdateNextInstance",
 "options": {
 "array": "my-new-array",
 "params": {
 "associate_public_ip_address": true,
 "image_href": "/image/href/123",
 }
 }
 }

 .. code-block:: json

 { "desc": "Reset the AMI image to the MCI default",
 "actor": "rightscale.server_array.UpdateNextInstance",
 "options": {
 "array": "my-new-array",
 "params": {
 "image_href": "default",
 }
 }
 }

 Dry Mode

 In Dry mode this actor *does* search for the ``array``, but allows it to be
 missing because its highly likely that the array does not exist yet. If the
 array does not exist, a mocked array object is created for the rest of the
 execution.

 During the rest of the execution, the code bypasses making any real changes
 and just tells you what changes it would have made.

 *This means that the dry mode cannot validate that the supplied params will
 work.*

 Example *dry* output::

 [Update my array (DRY Mode)] Verifying that array "new" exists
 [Update my array (DRY Mode)] Array "new" not found -- creating a mock.
 [Update my array (DRY Mode)] Would have updated "<mocked array new>"
 with params: {'server_array[associate_public_ip_address]': true,
 'server_array[image_href]': '/image/href/'}
 """

 all_options = {
 'array': (str, REQUIRED, 'ServerArray name to Update'),
 'exact': (bool, True, (
 'Whether to search for multiple ServerArrays and act on them.')),
 'params': (dict, REQUIRED, 'Next Instance RightScale parameters'),
 }

 def __init__(self, *args, **kwargs):
 """Validate the user-supplied parameters at instantiation time."""
 super(UpdateNextInstance, self).__init__(*args, **kwargs)
 self._params = self._generate_rightscale_params(
 'instance', self.option('params'))

 @gen.coroutine
 def _update_params(self, array):
 """Update the parameters on a RightScale Instance.

 args:
 array: The ServerArray to operate on
 """
 # Get the 'next instance' of the array that we're going to work on
 instance = yield self._client.show(array.next_instance)

 # Get our parameters
 params = self.option('params')

 # Magic: If a user supplies 'default' to the image_href then we do some
 # digging for them and find the 'default' AMI HREF for that server
 # array.
 if ('image_href' in params and params['image_href'] == 'default'):
 params['image_href'] = yield self._find_def_image_href(instance)

 # Second pass at the generating the parameters. We did this at
 # instantiation time as a sanity check to make sure the parameters were
 # half-decent. Now we run it a second time in case any the 'image_href'
 # magic above was executed.
 rs_params = self._generate_rightscale_params(
 'instance', self.option('params'))

 if self._dry:
 self.log.info('Would have updated array\'s next_instance "%s" '
 'with params: %s' %
 (instance.soul['name'], rs_params))
 raise gen.Return()

 self.log.info('Updating array\'s next_instance "%s" with params: %s' %
 (instance.soul['name'], rs_params))

 try:
 yield self._client.update(instance, rs_params)
 except requests.exceptions.HTTPError as e:
 if e.response.status_code in (422, 400):
 msg = ('Invalid parameters supplied to patch array "%s"' %
 self.option('array'))
 raise exceptions.RecoverableActorFailure(msg)
 raise

 raise gen.Return()

 @gen.coroutine
 def _find_def_image_href(self, instance):
 self.log.debug('Searching for default boot AMI for %s' %
 instance.soul['name'])

 # Find the MultiCloudImage associated with this 'instance' object, then
 # get the full list of 'settings' for that MCI.
 mci = yield self._client.show(instance.multi_cloud_image)
 self.log.debug('Got MCI: %s' % mci.soul['name'])
 mci_settings = yield self._client.show(mci.settings)
 self.log.debug('Got %s MCI Cloud Settings.' % len(mci_settings))

 # Now, find the 'setting' that matches the cloud of our instance. Note,
 # there should never be more than one returned -- so we take the first
 # one in the list and save it.
 try:
 setting = [s for s in mci_settings if
 s.cloud.path == instance.cloud.path][0]
 image_href = [l['href'] for l in setting.soul['links']
 if l['rel'] == 'image'][0]
 except KeyError:
 raise InvalidInputs(
 'Unable to locate default image_href for %s.' % instance.soul)

 raise gen.Return(image_href)

 @gen.coroutine
 def _execute(self):
 # First, find the arrays we're going to be patching.
 arrays = yield self._find_server_arrays(
 self.option('array'), exact=self.option('exact'))

 yield self._apply(self._update_params, arrays)

[docs]class Terminate(ServerArrayBaseActor):

 """Terminate all instances in a ServerArray

 Terminates all instances for a ServerArray in RightScale marking the array
 disabled.

 Options

 :array:
 (str) The name of the ServerArray to destroy

 :exact:
 (bool) Whether or not to search for the exact array name.
 (default: `true`)

 :strict:
 (bool) Whether or not to fail if the ServerArray does not exist.
 (default: `true`)

 Examples

 .. code-block:: json

 { "desc": "Terminate my array",
 "actor": "rightscale.server_array.Terminate",
 "options": {
 "array": "my-array"
 }
 }

 .. code-block:: json

 { "desc": "Terminate many arrays",
 "actor": "rightscale.server_array.Terminate",
 "options": {
 "array": "array-prefix",
 "exact": false,
 }
 }

 Dry Mode

 Dry mode still validates that the server array you want to terminate is
 actually gone. If you want to bypass this check, then set the
 ``warn_on_failure`` flag for the actor.
 """

 all_options = {
 'array': (str, REQUIRED, 'ServerArray name to Terminate'),
 'exact': (bool, True, (
 'Whether to search for multiple ServerArrays and act on them.')),
 'strict': (bool, True, 'Strict ServerArray validation.'),
 }

 def __init__(self, *args, **kwargs):
 """Validate the user-supplied parameters at instantiation time."""
 super(Terminate, self).__init__(*args, **kwargs)
 # By default, we're strict on our source/dest array validation
 self._raise_on = 'notfound'
 self._allow_mock = False

 if not self.option('strict'):
 self._raise_on = None
 self._allow_mock = True

 @gen.coroutine
 def _terminate_all_instances(self, array):
 if self._dry:
 self.log.info('Would have terminated all array "%s" instances.' %
 array.soul['name'])
 raise gen.Return()

 self.log.info('Terminating all instances in array "%s"' %
 array.soul['name'])
 task = yield self._client.terminate_server_array_instances(array)
 # We don't care if it succeeded -- the multi-terminate job
 # fails all the time when there are hosts still in a
 # 'terminated state' when this call is made. Just wait for it to
 # finish.
 yield self._client.wait_for_task(task)

 raise gen.Return()

 @gen.coroutine
 def _wait_until_empty(self, array, sleep=60):
 """Sleep until all array instances are terminated.

 This loop monitors the server array for its current live instance count
 and waits until the count hits zero before progressing.

 TODO: Add a timeout setting.

 Args:
 array: rightscale.Resource array object
 sleep: Integer time to sleep between checks (def: 60)
 """
 if self._dry:
 self.log.info('Pretending that array %s instances '
 'are terminated.' % array.soul['name'])
 raise gen.Return()

 while True:
 instances = yield self._client.get_server_array_current_instances(
 array)
 count = len(instances)
 self.log.info('%s instances found' % count)

 if count < 1:
 raise gen.Return()

 # At this point, sleep
 self.log.debug('Sleeping..')
 yield utils.tornado_sleep(sleep)

 @gen.coroutine
 def _disable_array(self, array):
 """Prevent the supplied ServerArray from auto scaling.

 args:
 array: rightscale.Resource array object
 """
 params = self._generate_rightscale_params(
 'server_array', {'state': 'disabled'})

 if self._dry:
 self.log.info('Would have updated array "%s" with params: %s' %
 (array.soul['name'], params))
 raise gen.Return()

 self.log.info('Disabling Array "%s"' % array.soul['name'])
 yield self._client.update(array, params)
 raise gen.Return()

 @gen.coroutine
 def _execute(self):
 # First, find the array we're going to be terminating.
 arrays = yield self._find_server_arrays(self.option('array'),
 raise_on=self._raise_on,
 allow_mock=self._allow_mock,
 exact=self.option('exact'))

 # Disable the array so that no new instances launch. Ignore the result
 # of this opertaion -- as long as it succeeds, we're happy. No need to
 # store the returned server array object.
 yield self._apply(self._disable_array, arrays)

 # Optionally terminate all of the instances in the array first.
 yield self._apply(self._terminate_all_instances, arrays)

 # Wait...
 yield self._apply(self._wait_until_empty, arrays)

 raise gen.Return()

[docs]class Destroy(Terminate):

 """Destroy a ServerArray in RightScale

 Destroys a ServerArray in RightScale by first invoking the Terminate actor,
 and then deleting the array as soon as all of the running instances have
 been terminated.

 Options

 :array:
 (str) The name of the ServerArray to destroy

 :exact:
 (bool) Whether or not to search for the exact array name.
 (default: `true`)

 :strict:
 (bool) Whether or not to fail if the ServerArray does not exist.
 (default: `true`)

 Examples

 .. code-block:: json

 { "desc": "Destroy my array",
 "actor": "rightscale.server_array.Destroy",
 "options": {
 "array": "my-array"
 }
 }

 .. code-block:: json

 { "desc": "Destroy many arrays",
 "actor": "rightscale.server_array.Destroy",
 "options": {
 "array": "array-prefix",
 "exact": false,
 }
 }

 Dry Mode

 In Dry mode this actor *does* search for the `array`, but allows it to be
 missing because its highly likely that the array does not exist yet. If the
 array does not exist, a mocked array object is created for the rest of the
 execution.

 During the rest of the execution, the code bypasses making any real changes
 and just tells you what changes it would have made.

 Example *dry* output::

 [Destroy Test (DRY Mode)] Beginning
 [Destroy Test (DRY Mode)] Terminating array before destroying it.
 [Destroy Test (terminate) (DRY Mode)] Array "my-array" not found --
 creating a mock.
 [Destroy Test (terminate) (DRY Mode)] Disabling Array "my-array"
 [Destroy Test (terminate) (DRY Mode)] Would have terminated all array
 "<mocked array my-array>" instances.
 [Destroy Test (terminate) (DRY Mode)] Pretending that array <mocked
 array my-array> instances are terminated.
 [Destroy Test (DRY Mode)] Pretending to destroy array "<mocked array
 my-array>"
 [Destroy Test (DRY Mode)] Finished successfully. Result: True
 """

 @gen.coroutine
 def _destroy_array(self, array):
 """
 TODO: Handle exceptions if the array is not terminatable.
 """
 if self._dry:
 self.log.info('Pretending to destroy array "%s"' %
 array.soul['name'])
 raise gen.Return()

 self.log.info('Destroying array "%s"' % array.soul['name'])
 yield self._client.destroy_server_array(array)
 raise gen.Return()

 @gen.coroutine
 def _execute(self):
 # Call the Terminate _execute function first
 yield super(Destroy, self)._execute()

 # Find the array we're going to be destroying.
 arrays = yield self._find_server_arrays(self.option('array'),
 raise_on=self._raise_on,
 allow_mock=self._allow_mock,
 exact=self.option('exact'))
 yield self._apply(self._destroy_array, arrays)
 raise gen.Return()

[docs]class Launch(ServerArrayBaseActor):

 """Launch instances in a ServerArray

 Launches instances in an existing ServerArray and waits until that array
 has become healthy before returning. *Healthy* means that the array has at
 least the user-specified ``count`` or ``min_count`` number of instances
 running as defined by the array definition in RightScale.

 Options

 :array:
 (str) The name of the ServerArray to launch
 :count:
 (str, int) Optional number of instance to launch. Defaults to min_count
 of the array.

 :enable:
 (bool) Should the autoscaling of the array be enabled? Settings this to
 `false`, or omitting the parameter will not disable an enabled array.

 :exact:
 (bool) Whether or not to search for the exact array name.
 (default: `true`)

 Examples

 .. code-block:: json

 { "desc": "Enable array and launch it",
 "actor": "rightscale.server_array.Launch",
 "options": {
 "array": "my-array",
 "enable": true
 }
 }

 .. code-block:: json

 { "desc": "Enable arrays starting with my-array and launch them",
 "actor": "rightscale.server_array.Launch",
 "options": {
 "array": "my-array",
 "enable": true,
 "exact": false
 }
 }

 .. code-block:: json

 { "desc": "Enable array and launch 1 instance",
 "actor": "rightscale.server_array.Launch",
 "options": {
 "array": "my-array",
 "count": 1
 }
 }

 Dry Mode

 In Dry mode this actor *does* search for the ``array``, but allows it to be
 missing because its highly likely that the array does not exist yet. If the
 array does not exist, a mocked array object is created for the rest of the
 execution.

 During the rest of the execution, the code bypasses making any real changes
 and just tells you what changes it would have made.

 Example *dry* output::

 [Launch Array Test #0 (DRY Mode)] Verifying that array "my-array" exists
 [Launch Array Test #0 (DRY Mode)] Array "my-array" not found -- creating
 a mock.
 [Launch Array Test #0 (DRY Mode)] Enabling Array "my-array"
 [Launch Array Test #0 (DRY Mode)] Launching Array "my-array" instances
 [Launch Array Test #0 (DRY Mode)] Would have launched instances of array
 <MagicMock name='my-array.self.show().soul.__getitem__()'
 id='4420453200'>
 [Launch Array Test #0 (DRY Mode)] Pretending that array <MagicMock
 name='my-array.self.show().soul.__getitem__()' id='4420453200'>
 instances are launched.
 """

 all_options = {
 'array': (str, REQUIRED, 'ServerArray name to launch'),
 'count': (
 (int, str), False,
 "Number of server to launch. Default: up to array's min count"),
 'enable': (bool, False, 'Enable autoscaling?'),
 'exact': (bool, True, (
 'Whether to search for multiple ServerArrays and act on them.')),
 }

 def __init__(self, *args, **kwargs):
 """Check Actor prerequisites."""

 # Base class does everything to set up a generic class
 super(Launch, self).__init__(*args, **kwargs)

 try:
 int(self._options.get('count', False))
 except ValueError:
 raise exceptions.InvalidOptions('`count` must be an integer.')

 @gen.coroutine
 def _wait_until_healthy(self, array, sleep=60):
 """Sleep until a server array has its min_count servers running.

 This loop monitors the server array for its current live instance count
 and waits until the count hits zero before progressing.

 TODO: Add a timeout setting.

 Args:
 array: rightscale.Resource array object
 sleep: Integer time to sleep between checks (def: 60)
 """
 if self._dry:
 self.log.info('Pretending that array %s instances are launched.'
 % array.soul['name'])
 raise gen.Return()

 # Get the current min_count setting from the ServerArray object, or get
 # the min_count from the count number supplied to the actor (if it
 # was).
 min_count = int(self._options.get('count', False))
 if not min_count:
 min_count = int(array.soul['elasticity_params']
 ['bounds']['min_count'])

 while True:
 instances = yield self._client.get_server_array_current_instances(
 array, filters=['state==operational'])
 count = len(instances)
 self.log.info('%s instances found, waiting for %s' %
 (count, min_count))

 if min_count <= count:
 raise gen.Return()

 # At this point, sleep
 self.log.debug('Sleeping..')
 yield utils.tornado_sleep(sleep)

 @gen.coroutine
 def _launch_instances(self, array, count=False):
 """Launch new instances in a specified array.

 Instructs RightScale to launch instances, specified amount, or array's
 autoscaling 'min' value, in a syncronous or async way.

 TODO: Ensure that if 'count' is supplied, its *added* to the current
 array 'server instance count'. This allows the actor to launch 10 new
 servers in an already existing array, and wait until all 10 + the
 original group of servers are Operational.

 Args:
 array - rightscale ServerArray object
 count - `False` to use array's _min_ value
 `int` to launch a specific number of instances
 """
 if not count:
 # Get the current min_count setting from the ServerArray object
 min_count = int(
 array.soul['elasticity_params']['bounds']['min_count'])

 instances = yield self._client.get_server_array_current_instances(
 array, filters=['state==operational'])
 current_count = len(instances)

 # Launch *up to* min_count. Not *new* min_count.
 count = min_count - current_count

 # Silly sanity check. If count < 0, set it to 0. There is no
 # concept of launching "negative" instance counts.
 if count < 0:
 count = 0

 if self._dry:
 self.log.info('Would have launched %s instances of array %s' % (
 count, array.soul['name']))
 raise gen.Return()

 if count < 1:
 self.log.warning((
 'This array already has %s instances, and '
 'min_count is set to %s') % (current_count, min_count))
 raise gen.Return()

 self.log.info('Launching %s instances of array %s' % (
 count, array.soul['name']))

 # Launch!
 yield self._client.launch_server_array(array, count=count)
 self.log.info('Launched %s instances for array %s' % (
 count, array.soul['name']))

 raise gen.Return()

 @gen.coroutine
 def _enable_array(self, array):
 """Enable AutoScaling in a SeverArray.

 args:
 array: rightscale.Resource ServerArray Object
 """
 # This means that RightScale will auto-scale-up the array as soon as
 # their next scheduled auto-scale run hits (usually 60s). Store the
 # newly updated array.
 if self.option('enable'):
 if not self._dry:
 self.log.info('Enabling Array "%s"' % array.soul['name'])
 params = self._generate_rightscale_params(
 'server_array', {'state': 'enabled'})
 array = yield self._client.update(array, params)
 else:
 self.log.info('Would enable array "%s"' % array.soul['name'])

 @gen.coroutine
 def _execute(self):
 # First, find the array we're going to be launching...
 arrays = yield self._find_server_arrays(
 self.option('array'),
 exact=self.option('exact'))

 # Enable the array, then launch it
 yield self._apply(self._enable_array, arrays)
 yield self._apply(self._launch_instances, arrays,
 int(self.option('count')))

 # Now, wait until the number of healthy instances in the array matches
 # the min_count (or is greater than) of that array.
 yield self._apply(self._wait_until_healthy, arrays)
 raise gen.Return()

[docs]class Execute(ServerArrayBaseActor):

 """Executes a RightScale script/recipe on a ServerArray

 Executes a RightScript or Recipe on a set of hosts in a ServerArray in
 RightScale using individual calls to the live running instances. These can
 be found in your RightScale account under *Design -> RightScript* or
 Design -> Cookbooks

 The RightScale API offers a *multi_run_executable* method that can be used
 to run a single script on all servers in an array -- but unfortunately this
 API method provides no way to monitor the progress of the individual jobs
 on the hosts. Furthermore, the method often executes on recently terminated
 or terminating hosts, which throws false-negative error results.

 Our actor explicitly retrieves a list of the *operational* hosts in an
 array and kicks off individual execution tasks for every host. It then
 tracks the execution of those tasks from start to finish and returns the
 results.

 Options

 :array:
 (str) The name of the ServerArray to operate on

 :script:
 (str) The name of the RightScript or Recipe to execute

 :expected_runtime:
 (str, int) Expected number of seconds to execute.
 (default: `5`)

 :concurrency:
 Max number of concurrent executions. This will fire off N executions
 in parallel, and continue with the remained as soon as the first
 execution is done. This is faster than creating N Sync executions.
 Note: When applied to multiple (M) arrays cumulative concurrency
 accross all arrays will remain at N. It will not be M x N.

 :inputs:
 (dict) Dictionary of Key/Value pairs to use as inputs for the script

 :exact:
 (str) Boolean whether or not to search for the exact array name.
 (default: `true`)

 Examples

 .. code-block:: json

 { "desc":" Execute script on my-array",
 "actor": "rightscale.server_array.Execute",
 "options": {
 "array": "my-array",
 "script": "connect to elb",
 "expected_runtime": 3,
 "inputs": {
 "ELB_NAME": "text:my-elb"
 }
 }
 }

 Dry Mode

 In Dry mode this actor *does* search for the `array`, but allows it to be
 missing because its highly likely that the array does not exist yet. If the
 array does not exist, a mocked array object is created for the rest of the
 execution.

 During the rest of the execution, the code bypasses making any real changes
 and just tells you what changes it would have made.

 Example *dry* output::

 [Destroy Test (DRY Mode)] Verifying that array "my-array" exists
 [Execute Test (DRY Mode)]
 kingpin.actors.rightscale.server_array.Execute Initialized
 [Execute Test (DRY Mode)] Beginning execution
 [Execute Test (DRY Mode)] Verifying that array "my-array" exists
 [Execute Test (DRY Mode)] Would have executed "Connect instance to ELB"
 with inputs "{'inputs[ELB_NAME]': 'text:my-elb'}" on "my-array".
 [Execute Test (DRY Mode)] Returning result: True
 """

 all_options = {
 'array': (str, REQUIRED,
 'ServerArray name on which to execute a script.'),
 'exact': (bool, True, (
 'Whether to search for multiple ServerArrays and act on them.')),
 'script': (str, REQUIRED,
 'RightScale RightScript or Recipe to execute.'),
 'expected_runtime': (int, 5, 'Expected number of seconds to execute.'),
 'concurrency': (int, 0, "Max number of concurrent executions."),
 'inputs': (dict, {}, (
 'Inputs needed by the script. Read _generate_rightscale_params.'))
 }

 @gen.coroutine
 def _get_operational_instances(self, array):
 """Gets a list of Operational instances and returns it.

 Warns on any non-Operational instances to let the operator know that
 their script may not execute there.

 Args:
 array: rightscale.Resource ServerArray Object
 """
 # Get all non-terminated instances
 all_instances = yield self._client.get_server_array_current_instances(
 array, filters=['state<>terminated'])

 # Filter out the Operational ones from the Non-Operational (booting,
 # etc) instances.
 op = [inst for inst in all_instances if inst.soul['state'] ==
 'operational']
 non_op = [inst for inst in all_instances if inst.soul['state'] !=
 'operational']

 # Warn that there are Non-Operational instances and move on.
 non_op_count = len(non_op)
 if non_op_count > 0:
 self.log.warning(
 'Found %s instances (in %s) in a non-Operational state, '
 'will not execute on these hosts!' %
 (non_op_count, array.soul['name']))

 self.log.info('Found %s instances (in %s) in the Operational state.' %
 (len(op), array.soul['name']))
 raise gen.Return(op)

 @gen.coroutine
 def _check_script(self, script_name):
 if '::' in script_name:
 script = yield self._client.find_cookbook(script_name)
 else:
 script = yield self._client.find_right_script(script_name)

 raise gen.Return(bool(script))

 def _check_inputs(self):
 """Check that rightscale inputs are formatted properly.

 For more information read:
 http://reference.rightscale.com/api1.5/resources/ResourceInputs.html

 Raises:
 InvalidOptions
 """
 inputs = self.option('inputs')
 issues = False
 types = ('text', 'ignore', 'env', 'cred', 'key', 'array')
 for key, value in inputs.items():
 if value.split(':')[0] not in types:
 issues = True
 self.log.error('Value for %s needs to begin with %s'
 % (key, types))

 if issues:
 raise exceptions.InvalidOptions('One or more inputs has a problem')

 @gen.coroutine
 def _wait_for_all_tasks(self, task_pairs):
 """Wait for all instances to succeed, or print audit entry if failed.

 Args:
 task_pairs: list of tuples produced by run_executable_on_instances
 [(instance, task), (instance, task)]

 Returns:
 boolean: All tasks succeeded. If at least 1 failed - this is False
 """

 task_count = len(task_pairs)
 self.log.info('Queueing %s tasks' % task_count)
 task_waiting = []

 for instance, task in task_pairs:
 task_name = 'Executing "%s" on instance: %s' % (
 self.option('script'), instance.soul['name'])

 task_waiting.append(self._client.wait_for_task(
 task=task,
 task_name=task_name,
 sleep=self.option('expected_runtime'),
 loc_log=self.log,
 instance=instance
))

 self.log.info('Waiting for %s tasks to finish...' % task_count)
 statuses = yield task_waiting

 raise gen.Return(all(statuses))

 @gen.coroutine
 def _exec_and_wait(self, name, inputs, instance, sleep=5):
 """Start execution and wait for completion on a single instance.

 This shim combines the api calls for run_executable_on_instances and
 wait_for_task.

 Args:
 name: Recipe or RightScript String Name
 inputs: Dict of Key/Value Input Pairs
 instance: a single instance object of rightscale.Resource
 sleep: number of seconds to wait before the first status check

 Returns:
 success of wait_for_task()
 """
 tasks = yield self._client.run_executable_on_instances(
 name, inputs, instances=[instance])

 # tasks[0][1] is because there's only 1 task and
 # run_executable_on_instances returns (instance, task) tuple
 success = yield self._client.wait_for_task(
 task=tasks[0][1], task_name=name, sleep=sleep, loc_log=self.log,
 instance=instance)

 raise gen.Return(success)

 @gen.coroutine
 def _execute_array_with_concurrency(self, arrays, inputs):
 """Executes a script on many arrays with limited instance-concurrency.

 This method leverages the same rightscale.api methods as the non
 concurrent method, with the exception that it waits for tasks to finish
 after queuing the limit. The method has to know when a task is complete
 in order to cleverly schedule the next task.

 args:
 arrays: A list of, or a single instance of rightscale.Resource
 ServerArray objects
 inputs: A string of inputs generated by
 self._generate_rightscale_params()
 """
 if not isinstance(arrays, list):
 arrays = [arrays]

 instances = []
 for array in arrays:
 new_inst = yield self._get_operational_instances(array)
 instances.extend(new_inst)

 count = len(instances)

 if self._dry:
 self.log.info((
 'Would have executed "%s" with inputs "%s" on %s instances '
 'on %s arrays with limited concurrency of %s.') % (
 self.option('script'), inputs, count, len(arrays),
 self.option('concurrency')))
 raise gen.Return()

 self.log.info('Concurrency set to %s' % self.option('concurrency'))
 tasks = []
 for i in instances:
 tasks.append(self._exec_and_wait(
 name=self.option('script'),
 inputs=inputs,
 instance=i,
 sleep=self.option('expected_runtime')))

 running_tasks = len([t for t in tasks if t.running()])
 if running_tasks < self.option('concurrency'):
 # We can queue more tasks, continue the loop to add one more.
 continue

 self.log.debug('Concurrency saturated. Waiting...')
 while running_tasks >= self.option('concurrency'):
 yield gen.moment
 running_tasks = len([t for t in tasks if t.running()])

 self.log.debug('Concurrency desaturated: %s<%s. Continuing.' % (
 running_tasks, self.option('concurrency')))

 statuses = yield tasks
 raise gen.Return(all(statuses))

 @gen.coroutine
 def _execute_array(self, array, inputs):
 """Executes a script on an array.

 This method does the real work. It gets a list of instances from an
 array, finds a script, executes the script, and then waits for the
 results of the script. Ultimately it raises a failure if the script
 fails, or simply exits cleanly.

 Note: This is separated out from the _execute() method to facilitate
 using the self._apply() function with multiple arrays.

 args:
 array: rightscale.Resource ServerArray
 inputs: A string of inputs generated by
 self._generate_rightscale_params()
 """
 instances = yield self._get_operational_instances(array)

 if self._dry:
 self.log.info(
 'Would have executed "%s" with inputs "%s" on "%s".'
 % (self.option('script'), inputs, array.soul['name']))
 raise gen.Return()

 count = len(instances)
 # Execute the script on all of the servers in the array and store the
 # task status resource records.
 self.log.info(
 'Executing "%s" on %s instances in the array "%s"' %
 (self.option('script'), count, array.soul['name']))

 try:
 task_pairs = yield self._client.run_executable_on_instances(
 self.option('script'), inputs, instances)
 except api.ServerArrayException as e:
 self.log.critical('Script execution error: %s' % e)
 raise exceptions.RecoverableActorFailure(
 'Invalid parameters supplied to execute script.')

 # Finally, monitor all of the tasks for completion.
 successful = yield self._wait_for_all_tasks(task_pairs)

 # If not all of the executions succeeded, raise an exception.
 if not successful:
 self.log.critical('One or more tasks failed.')
 raise TaskExecutionFailed()
 else:
 self.log.info('Completed %s tasks.' % count)

 raise gen.Return()

 @gen.coroutine
 def _execute(self):
 """Executes the actor.

 Logs into RightScale, validates (if in dry run) that the script
 actually exists, and then executes the script on all of the matched
 server arrays.
 """
 # Munge our inputs into something that RightScale likes
 inputs = self._generate_rightscale_params(
 'inputs', self.option('inputs'))

 # Theres no way to 'test' the actual execution of the rightscale
 # scripts, so we'll just check that it exists.
 if self._dry:
 script_found = yield self._check_script(self.option('script'))

 if not script_found:
 msg = 'Script "%s" not found!' % self.option('script')
 raise exceptions.InvalidOptions(msg)

 self._check_inputs()

 # First, find the array we're going to be launching. Get a list back of
 # the 'operational' instances that we are able to execute scripts
 # against.
 arrays = yield self._find_server_arrays(
 self.option('array'), exact=self.option('exact'))
 if self.option('concurrency'):
 yield self._execute_array_with_concurrency(arrays, inputs)
 else:
 yield self._apply(self._execute_array, arrays, inputs)

 © Copyright 2015, Nextdoor.
 Created using Sphinx 1.4.

_modules/kingpin/actors/rightscale/alerts.html

 Navigation

 		
 index

 		
 modules |

 		Kingpin 0.4.0 documentation »

 		Module code »

 Source code for kingpin.actors.rightscale.alerts

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#
Copyright 2014 Nextdoor.com, Inc

"""
:mod:`kingpin.actors.rightscale.alerts`
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
"""

import logging

from tornado import gen
import requests

from kingpin.actors import exceptions
from kingpin.actors.rightscale import base
from kingpin.constants import REQUIRED

log = logging.getLogger(__name__)

__author__ = 'Matt Wise <matt@nextdoor.com>'

class InvalidInputs(exceptions.InvalidOptions):

 """Raised when supplied inputs are invalid for a ServerArray."""

class AlertSpecNotFound(exceptions.RecoverableActorFailure):

 """Raised when an Alert Spec could not be found"""

class CreateFailed(exceptions.RecoverableActorFailure):

 """Raised when an Alert Spec could not be created"""

class AlertsBaseActor(base.RightScaleBaseActor):

 """Abstract Alerts Actor that provides some utility methods."""

 @gen.coroutine
 def _find_alert_spec(self, name, subject_href):
 """Search for an AlertSpec by-name and return the resource.

 Note: A non-exact resource match is used below so that we return all of
 the Alert Specs that are matched by name. This method returns the
 resources in a list.

 Args:
 name: RightScale AlertSpec Name
 subject_href: The HREF of the subject this AlertSpec is assigned
 to.

 Return:
 [<rightcale.Resource objects>]
 """
 log.debug('Searching for AlertSpec matching: %s' % name)
 found_spec = yield self._client.find_by_name_and_keys(
 self._client._client.alert_specs, name, exact=False,
 subject_href=subject_href)

 if not found_spec:
 log.debug('AlertSpec matching "%s" could not be found.' % name)
 return

 log.debug('Got AlertSpec: %s' % found_spec)
 raise gen.Return(found_spec)

[docs]class Create(AlertsBaseActor):

 """Create a RightScale Alert Spec

 Options match the documentation in RightScale:
 http://reference.rightscale.com/api1.5/resources/ResourceAlertSpecs.html#create

 Options

 :array:
 The name of the Server or ServerArray to create the AlertSpec on.

 :strict_array:
 Whether or not to fail if the Server/ServerArray does not exist.
 (default: False)

 :condition:
 The condition (operator) in the condition sentence.
 (`>, >=, <, <=, ==, !=`)

 :description:
 The description of the AlertSpec.
 (*optional*)

 :duration:
 The duration in minutes of the condition sentence.
 (`^\d+$`)

 :escalation_name:
 Escalate to the named alert escalation when the alert is triggered.
 (*optional*)

 :file:
 The RRD path/file_name of the condition sentence.

 :name:
 The name of the AlertSpec.

 :threshold:
 The threshold of the condition sentence.

 :variable:
 The RRD variable of the condition sentence

 :vote_tag:
 Should correspond to a vote tag on a ServerArray if vote to grow or
 shrink.

 :vote_type:
 Vote to grow or shrink a ServerArray when the alert is triggered. Must
 either escalate or vote.
 (`grow` or `shrink`)

 Examples

 Create a high network activity alert on my-array:

 .. code-block:: json

 { "desc": "Create high network rx alert",
 "actor": "rightscale.alerts.Create",
 "options": {
 "array": "my-array",
 "strict_array": true,
 "condition": ">",
 "description": "Alert if amount of network data received is high",
 "duration": 180,
 "escalation_name": "Email Engineering",
 "file": "interface/if_octets-eth0",
 "name": "high network rx activity",
 "threshold": "50000000",
 "variable": "rx"
 }
 }

 Dry Mode

 In Dry mode this actor *does* validate that the ``array`` array exists.
 If it does not, a `kingpin.actors.rightscale.api.ServerArrayException` is
 thrown. Once that has been validated, the dry mode execution simply logs
 the Alert Spec that it would have created.

 Example *dry* output::

 TODO: Fill this in
 """

 all_options = {
 'array': (str, REQUIRED, 'Name of the ServerArray act on.'),
 'strict_array': (bool, False,
 ('Whether or not to fail if the Server/ServerArray ',
 'does not exist.')),
 'condition': (str, REQUIRED,
 'The condition (operator) in the condition sentence.'),
 'description': (str, None, 'The description of the AlertSpec.'),
 'duration': ((int, str), REQUIRED,
 'The duration in minutes of the condition sentence.'),
 'escalation_name': (str, None,
 ('Escalate to the named alert escalation when the',
 'alert is triggered. Must either escalate or',
 'vote.')),
 'file': (str, REQUIRED,
 'The RRD path/file_name of the condition sentence.'),
 'name': (str, REQUIRED, 'The name of the AlertSpec.'),
 'threshold': (str, REQUIRED,
 'The threshold of the condition sentence.'),
 'variable': (str, REQUIRED,
 'The RRD variable of the condition sentence.'),
 'vote_tag': (str, None,
 ('Should correspond to a vote tag on a ServerArray if ',
 'vote to grow or shrink.')),
 'vote_type': (str, None,
 ('Vote to grow or shrink a ServerArray when the alert ',
 'is triggered. Must either escalate or vote.'))
 }

 def __init__(self, *args, **kwargs):
 """Validate the user-supplied parameters at instantiation time."""
 super(Create, self).__init__(*args, **kwargs)
 # By default, we're strict on our array array validation
 self._array_raise_on = 'notfound'
 self._array_allow_mock = False

 if not self.option('strict_array'):
 self._array_raise_on = None
 self._array_allow_mock = True

 if self.option('vote_type') not in ('grow', 'shrink', None):
 raise exceptions.InvalidOptions(
 'vote_type must be either: grow, shrink, None')

 @gen.coroutine
 def _execute(self):
 # Find the array we're adding an alert spec to. Specifically, we need
 # the servers HREF.
 array = yield self._find_server_arrays(
 self.option('array'),
 raise_on=self._array_raise_on,
 allow_mock=self._array_allow_mock)
 self.log.info('Found %s (%s)' % (array.soul['name'], array.href))

 # Add all of the required parameters to a dictionary
 params = {
 'condition': self.option('condition'),
 'description': self.option('description'),
 'duration': int(self.option('duration')),
 'file': self.option('file'),
 'name': self.option('name'),
 'subject_href': array.href,
 'threshold': self.option('threshold'),
 'variable': self.option('variable'),
 }

 # Generate the RightScale parameters that we need to pass in when
 # creating the alert. The optional parameters should not be passed in
 # if their option value came in as None.
 _optional_params = [
 'description', 'escalation_name', 'vote_tag', 'vote_type'
]
 for optional in _optional_params:
 if self.option(optional):
 params[optional] = self.option(optional)

 params = self._generate_rightscale_params('alert_spec', params)
 self.log.debug('Generated params: %s' % params)

 if self._dry:
 # In dry run mode, just log out what we would have done.
 self.log.info('Would have created the alert spec \"%s\" on %s' %
 (self.option('name'), array.soul['name']))
 raise gen.Return()

 # We're really doin this. If we get a known exception back, handle
 # it. Otherwise, raise it.
 try:
 yield self._client.create_resource(
 self._client._client.alert_specs, params)
 self.log.info('Alert spec has been created')
 except requests.exceptions.HTTPError as e:
 if e.response.status_code in (422, 400):
 msg = ('Invalid parameters supplied to Alert Spec "%s": %s'
 % (self.option('name'), params))
 raise exceptions.RecoverableActorFailure(msg)
 raise

[docs]class Destroy(AlertsBaseActor):

 """Destroy existing RightScale Alert Specs

 This actor searches RightScale for any Alert Specs that match the ``name``
 and ``array`` that you supplied, then deletes all of them. RightScale lets
 you have multiple alert specs with the same name, so if this actor finds
 multiple specs, it will delete them all.

 Options

 :array:
 The name of the Server or ServerArray to delete the AlertSpec from.

 :name:
 The name of the AlertSpec.

 Examples

 Destroy a high network activity alert on my-array:

 .. code-block:: json

 { "desc": "Destroy high network rx alert",
 "actor": "rightscale.alerts.Destroy",
 "options": {
 "array": "my-array",
 "name": "high network rx activity",
 }
 }

 Dry Mode

 In Dry mode this actor *does* validate that the ``array`` array exists,
 and that the AlertSpec exists on that array so that it can be deleted. A
 RecoverableActorFailure error is thrown if it does not exist.

 Example *dry* output::

 14:31:49 INFO Rehearsing... Break a leg!
 14:31:49 INFO [DRY: Kingpin] Preparing actors from delete.json
 14:31:53 INFO [DRY: Destroy high network rx alert] Found
 my-array (/api/server_arrays/329142003) to delete alert spec from
 14:31:54 INFO [DRY: Destroy high network rx alert] Would have
 deleted the alert spec "high network rx activity" on my-array
 """

 all_options = {
 'array': (str, REQUIRED, 'Name of the ServerArray act on.'),
 'name': (str, REQUIRED, 'The name of the AlertSpec.')
 }

 def __init__(self, *args, **kwargs):
 """Validate the user-supplied parameters at instantiation time."""
 super(Destroy, self).__init__(*args, **kwargs)
 # By default, we're strict on our array validation
 self._array_raise_on = 'notfound'
 self._array_allow_mock = False

 @gen.coroutine
 def _execute(self):
 # Find the array we're adding an alert spec to. Specifically, we need
 # the servers HREF.
 array = yield self._find_server_arrays(
 self.option('array'),
 raise_on=self._array_raise_on,
 allow_mock=self._array_allow_mock)

 self.log.info('Found %s (%s) to delete alert spec from' %
 (array.soul['name'], array.href))

 # Find the AlertSpec on this server, if it exists.
 alerts = yield self._find_alert_spec(
 self.option('name'), array.href)

 # If we can't find the AlertSpec specific to the subjet array that was
 # supplied, raise an exception and bail.
 if not alerts:
 raise AlertSpecNotFound(
 '"%s" could not be found on %s' %
 (self.option('name'), array.soul['name']))

 # We'll store our 'delete spec' futures in here
 deletes = []

 for spec in alerts:
 log.debug('Found Alert Spec %s' % spec.soul)

 if self._dry:
 # In dry run mode, just log out what we would have done.
 self.log.info('Would have deleted alert \"%s\" (%s) on %s' %
 (spec.soul['name'],
 spec.href,
 array.soul['name']))
 else:
 # We're really doin this!
 self.log.info('Deleting alert \"%s\" (%s) on %s' %
 (spec.soul['name'],
 spec.href,
 array.soul['name']))
 deletes.append(self._client.destroy_resource(spec))

 # Wait for the deletes to finish
 if deletes:
 yield deletes

 © Copyright 2015, Nextdoor.
 Created using Sphinx 1.4.

_static/minus.png

_modules/kingpin/actors/rightscale/mci.html

 Navigation

 		
 index

 		
 modules |

 		Kingpin 0.4.0 documentation »

 		Module code »

 Source code for kingpin.actors.rightscale.mci

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#
Copyright 2014 Nextdoor.com, Inc

"""
:mod:`kingpin.actors.rightscale.mci`
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.. _MultiCloudImages_:
 http://reference.rightscale.com/api1.5/resources/ResourceMultiCloudImages.html
 http://reference.rightscale.com/api1.5/resources/ResourceMultiCloudImageSettings.html
"""

import logging

from tornado import gen

from kingpin.actors import exceptions
from kingpin.actors.rightscale import base
from kingpin.constants import REQUIRED

log = logging.getLogger(__name__)

__author__ = 'Matt Wise <matt@nextdoor.com>'

class MCIBaseActor(base.RightScaleBaseActor):

 """Abstract MCI Actor that provides some utility methods."""

[docs]class Create(MCIBaseActor):

 """Creates a RightScale Multi Cloud Image.

 Options match the documentation in RightScale:
 http://reference.rightscale.com/api1.5/resources/ResourceMultiCloudImages.html

 Options

 :name:
 The name of the MCI to be created.

 :description:
 The description of the MCI to be created.
 (*optional*)

 :images:
 A list of dicts that each describe a single cloud and the image in that
 cloud to launch. See below for details.

 Image Definitions

 Each cloud image definition is a dictionary that takes a few keys.

 :cloud:
 The name of the cloud as found in RightScale. We use the cloud 'Name'
 which can be found in your `Settings -> Account Settings -> Clouds ->
 insert_cloud_here` page. For example `AWS us-west-2`.

 :image:
 The cloud-specific Image UID. For example `ami-a1234abc`.

 :instance_type:
 The default instance type to launch when this AMI is launched. For
 example, `m1.small`.
 (*optional*)

 :user_data:
 The custom user data to pass to the instance on-bootup.
 (*optional*)

 Examples

 .. code-block:: json

 { "actor": "rightscale.mci.Create",
 "desc": "Create an MCI",
 "options": {
 "name": "Ubuntu i386 14.04",
 "description": "this is our test mci",
 "images": [
 {
 "cloud": "EC2 us-west-2",
 "image": "ami-e29774d1",
 "instance_type": "m1.small",
 "user_data": "cd /bin/bash"
 },
 {
 "cloud": "EC2 us-west-1",
 "image": "ami-b58142f1",
 "instance_type": "m1.small",
 "user_data": "cd /bin/bash"
 }
]
 }
 }

 """

 all_options = {
 'name': (str, REQUIRED, 'The name of the MCI to be created.'),
 'description': (
 str, '',
 'The description of the MCI to be created.'),
 'images': (
 list, [],
 'A list of objects that describe our per cloud image settings.'),
 }

 def __init__(self, *args, **kwargs):
 """Validate the user-supplied parameters at instantiation time."""

 super(Create, self).__init__(*args, **kwargs)

 allowed_image_options = (
 'cloud', 'image', 'instance_type', 'user_data')
 required_image_options = ('cloud', 'image')

 for image in self.option('images'):
 # Sanity check that no extra options were passed in
 for key in image.keys():
 if key not in allowed_image_options:
 raise exceptions.InvalidOptions(
 'Invalid option (%s) found in Image %s' % (key, image))

 # Make sure that the required options were passed in
 for required in required_image_options:
 if required not in image.keys():
 raise exceptions.InvalidOptions(
 'Missing option "%s" in Image %s' %
 (required, image))

 @gen.coroutine
 def _get_image_def(self, description):
 """Returns a fully populated set of Multi Cloud Image settings.

 This method takes in a dictionary with as set of parameters (cloud,
 image, instance_type, user_data) and returns a fully ready-to-use
 set of RightScale-formatted parameters to create that image. The method
 handles discovering the RightScale HREFs for the cloud, image and
 instance_type options.

 Args:
 description: A dictionary with the keys: cloud, image,
 instance_type, user_data

 Returns:
 A RightScale-formatted array of tuples.
 """

 # Get our cloud object first -- its required so that we can search for
 # the image/ramdisk/etc hrefs.
 cloud = yield self._client.find_by_name_and_keys(
 collection=self._client._client.clouds,
 name=description['cloud'])
 if not cloud:
 raise exceptions.InvalidOptions(
 'Invalid Cloud name supplied: %s' % description['cloud'])

 # Find our image by searching for the resource_uid that matches.
 image = yield self._client.find_by_name_and_keys(
 collection=cloud.images,
 resource_uid=description['image'])
 if not image:
 raise exceptions.InvalidOptions(
 'Invalid cloud image name supplied: %s' % description['image'])

 # Find our instance type now too
 instance = yield self._client.find_by_name_and_keys(
 collection=cloud.instance_types,
 name=description['instance_type'])
 if not instance:
 raise exceptions.InvalidOptions(
 'Invalid cloud instance_type supplied: %s' %
 description['instance_type'])

 # Generate our mci parameters, and each of the image settings
 # parameters. This validates that our inputs are all correct one last
 # time.
 definition = self._generate_rightscale_params(
 prefix='multi_cloud_image_setting',
 params={
 'cloud_href': cloud.href,
 'image_href': image.href,
 'instance_type_href': instance.href,
 'user_data': description['user_data'],
 })

 self.log.debug('Prepared MCI Image Definition: %s' % definition)
 raise gen.Return(definition)

 @gen.coroutine
 def _execute(self):

 # Make sure the MCI doesn't already exist. If it does, we bail.
 mci = yield self._client.find_by_name_and_keys(
 collection=self._client._client.multi_cloud_images,
 name=self.option('name'))
 if mci:
 raise exceptions.InvalidOptions(
 'MCI "%s" already exists.' % self.option('name'))

 # Generate the parameters for creating the top level MCI object
 mci_params = self._generate_rightscale_params(
 prefix='multi_cloud_image',
 params={
 'description': self.option('description'),
 'name': self.option('name')
 })

 # Now, we need to validate that all of the inputs are correct by
 # discovering the hrefs for each of the images supplied.
 image_futures = []
 for image in self.option('images'):
 image_futures.append(self._get_image_def(image))
 mci_settings_params = yield image_futures

 # Finally, if we're dry, bail out..
 if self._dry:
 self.log.info('Would have created MCI: %s' % self.option('name'))
 for setting in mci_settings_params:
 self.log.info('Image Def: %s' % setting)
 raise gen.Return()

 # Ok, lets create this thing!
 self.log.info('Creating MCI %s' % self.option('name'))
 mci = yield self._client.create_resource(
 self._client._client.multi_cloud_images, mci_params)

 # Now add each of the image descriptions to the mci
 for setting in mci_settings_params:
 self.log.info('Creating MCI Setting: %s' % setting)
 yield self._client.create_resource(
 mci.settings, setting)

[docs]class Destroy(MCIBaseActor):

 """Deletes a RightScale MCI.

 Options match the documentation in RightScale:
 http://reference.rightscale.com/api1.5/resources/ResourceMultiCloudImages.html

 Options

 :name:
 The name of the multi cloud image to be deleted.

 Examples

 .. code-block:: json

 { "actor": "rightscale.mci.Destroy",
 "desc": "Create an MCI",
 "options": {
 "name": "Ubuntu i386 14.04",
 }
 }

 """

 all_options = {
 'name': (str, REQUIRED,
 'The name of the multi cloud image to be deleted.'),
 }

 @gen.coroutine
 def _execute(self):

 mci = yield self._client.find_by_name_and_keys(
 collection=self._client._client.multi_cloud_images,
 name=self.option('name'))
 if not mci:
 raise exceptions.InvalidOptions(
 'MCI "%s" does not exist.' % self.option('name'))

 info = (yield self._client.show(mci.self)).soul

 if self._dry:
 self.log.info('Would delete MCI %s' % info['name'])
 raise gen.Return()

 self.log.info('Deleting MCI %s' % info['name'])
 yield self._client.destroy_resource(mci)

 © Copyright 2015, Nextdoor.
 Created using Sphinx 1.4.

_modules/kingpin/actors/rightscale/api.html

 Navigation

 		
 index

 		
 modules |

 		Kingpin 0.4.0 documentation »

 		Module code »

 Source code for kingpin.actors.rightscale.api

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#
Copyright 2014 Nextdoor.com, Inc

"""
:mod:`kingpin.actors.rightscale.api`
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Base RightScale API Access Object.

This package provides access to the RightScale API via Tornado-style
`@gen.coroutine` wrapped methods. These methods are, however, just wrappers
for threads that are being fired off in the background to make the API
calls.

Async vs Threads

In the future, this will get re-factored to use a native Tornado
AsyncHTTPClient object. The methods themselves will stay the same, but the
underlying private methods will change.

The methods in this object are specifically designed to support common
operations that the RightScale Actor objects need to do. Operations like
'find server array', 'launch server array', etc. This is not meant as a pure
one-to-one mapping of the RightScale API, but rather a mapping of conceptual
operations that the Actors need.

Method Design Note

RightScale mixes and matches their API calls... some of them you pass in a
major method and then supply a resource ID to act on. Others you pass in the
resource_id and get back a list of methods that you can execute.

For consistency in our programming model, this class relies o you passing in
rightscale.Resource objects everywhere, and it does the resource->ID
translation.
"""

from datetime import datetime
from os import path
import logging

from retrying import retry as sync_retry
from rightscale import util as rightscale_util
from tornado import concurrent
from tornado import gen
from tornado import ioloop
import requests
import rightscale
import simplejson

from kingpin import utils
from kingpin.actors.rightscale import settings

log = logging.getLogger(__name__)

Suppress InsecurePlatformWarning
requests.packages.urllib3.disable_warnings()

__author__ = 'Matt Wise <matt@nextdoor.com>'

DEFAULT_ENDPOINT = 'https://my.rightscale.com'

This executor is used by the tornado.concurrent.run_on_executor()
decorator. We would like this to be a class variable so its shared
across RightScale objects, but we see testing IO errors when we
do this.
EXECUTOR = concurrent.futures.ThreadPoolExecutor(10)

[docs]class ServerArrayException(Exception):

 """Raised when an operation on or looking for a ServerArray fails"""

class RightScale(object):

 # Get references to existing objects that are used by the
 # tornado.concurrent.run_on_executor() decorator.
 ioloop = ioloop.IOLoop.current()
 executor = EXECUTOR

 def __init__(self, token, endpoint=DEFAULT_ENDPOINT):
 """Initializes the RightScaleOperator Object for a RightScale Account.

 Args:
 token: A RightScale RefreshToken
 api: API URL Endpoint
 """
 self._token = token
 self._endpoint = endpoint
 self._client = rightscale.RightScale(refresh_token=self._token,
 api_endpoint=self._endpoint)

 # Quiet down the urllib requests library, its noisy even in
 # INFO mode and muddies up the logs.
 r_log = logging.getLogger('requests.packages.urllib3.connectionpool')
 r_log.setLevel(logging.WARNING)

 log.debug('%s initialized (token=<hidden>, endpoint=%s)' %
 (self.__class__.__name__, endpoint))

 def get_res_id(self, resource):
 """Returns the Resource ID of a given RightScale Resource object.

 Args:
 rightscale.Resource object

 Returns:
 Integer of Resource ID
 """
 return int(path.split(resource.self.path)[-1])

 @concurrent.run_on_executor
 @sync_retry(**settings.RETRYING_SETTINGS)
 @utils.exception_logger
 def find_server_arrays(self, name, exact=True):
 """Search for a list of ServerArray by name and return the resources.

 Args:
 name: RightScale ServerArray Name
 exact: Return a single exact match, or multiple matching resources.

 Returns:
 <rightscale.Resource object(s)>
 """
 log.debug('Searching for ServerArrays matching: %s (exact match: %s)' %
 (name, exact))

 found_arrays = rightscale_util.find_by_name(
 self._client.server_arrays, name, exact=exact)

 if not found_arrays:
 log.debug('ServerArray matching "%s" not found' % name)
 return

 if isinstance(found_arrays, list):
 names = [s.soul['name'] for s in found_arrays]
 else:
 names = [found_arrays.soul['name']]

 log.debug('Got ServerArray(s): %s' % ', '.join(names))

 return found_arrays

 @concurrent.run_on_executor
 @sync_retry(**settings.RETRYING_SETTINGS)
 @utils.exception_logger
 def show(self, resource):
 """Async wrapping of <resource>.show() with retry wrapper.

 Args:
 resource: rightscale.Resource object

 Returns:
 <rightscale.Resource object>.show()
 """
 return resource.show()

 @concurrent.run_on_executor
 @utils.exception_logger
 def find_cookbook(self, name):
 """Search for a Cookbook by-name and return the resource.

 Args:
 name: Cookbook Name

 Return:
 rightscale.Resource object
 """
 cookbook = name.split('::')[0]

 log.debug('Searching for Cookbooks matching: %s' % name)
 found_cookbooks = self._client.cookbooks.index(
 params={'filter[]': ['name==%s' % cookbook],
 'view': 'extended'})
 found_recipes = filter(
 lambda r: r.soul['metadata']['recipes'].get(name),
 found_cookbooks)

 if not found_recipes:
 log.debug('Recipe matching "%s" could not be found.' % name)
 log.debug('Found cookbooks %s' % found_cookbooks)
 return

 recipe = found_recipes[0]

 log.debug('Found recipe: %s' % recipe)

 return recipe

 @concurrent.run_on_executor
 @sync_retry(**settings.RETRYING_SETTINGS)
 @utils.exception_logger
 def find_right_script(self, name):
 """Search for a RightScript by-name and return the resource.

 Args:
 name: RightScale RightScript Name

 Return:
 rightscale.Resource object
 """
 log.debug('Searching for RightScript matching: %s' % name)
 found_script = rightscale_util.find_by_name(
 self._client.right_scripts, name, exact=True)

 if not found_script:
 log.debug('RightScript matching "%s" could not be found.' % name)
 return

 log.debug('Got RightScript: %s' % found_script)

 return found_script

 @concurrent.run_on_executor
 @sync_retry(**settings.RETRYING_SETTINGS)
 @utils.exception_logger
 def find_by_name_and_keys(self, collection, exact=True, **kwargs):
 """Search for a RightScale resource by name, and optional keys.

 This code is blatently stolen from rightscale.util.find_by_name and
 just re-worked so that we can search with the subject_href.
 RightScale deliberately clones AlertSpecs all of the place. For our
 purposes, searching with the subject_href becomes a requirement to
 avoid complex scenarios where we may return the wrong AlertSpec.

 Args:
 collection: RightScale.<xxx> resource object
 exact: If True, returns the first match. If False, returns a list
 of all returned resources.
 **kwargs: Any additional keys-and-values to use in the search.

 Returns:
 One RightScale Resource Object or a List of objects.
 """
 filter_keys = []
 for key, val in kwargs.items():
 filter_keys.append('%s==%s' % (key, val))
 params = {'filter[]': sorted(filter_keys)}

 found = collection.index(params=params)
 if not exact and len(found) > 0:
 return found

 if len(found) < 1:
 return []

 if len(found) == 1:
 return found[0]

 return found

 @concurrent.run_on_executor
 @sync_retry(**settings.RETRYING_SETTINGS)
 @utils.exception_logger
 def destroy_resource(self, res):
 """Destroy an RightScale resource.

 Args:
 res: Resource object to destroy
 """
 return res.self.destroy()

 @concurrent.run_on_executor
 @sync_retry(**settings.RETRYING_SETTINGS)
 @utils.exception_logger
 def create_resource(self, res, params):
 """Create an RightScale resource.

 Args:
 res: Resource object to destroy
 params: Dict of RightScale parameters to pass in

 Returns:
 The Rightscale Resource itself
 """
 return res.create(params=params)

 @concurrent.run_on_executor
 @utils.exception_logger
 def clone_server_array(self, array):
 """Clone a Server Array.

 Clones an existing Server Array into a new array. Requires the
 source template array ID number. Returns the newly cloned array.

 Args:
 array: Source ServerArray Resource Object

 Return:
 <rightscale.Resource object>
 """
 log.debug('Cloning ServerArray %s' % array.soul['name'])
 source_id = self.get_res_id(array)
 new_array = self._client.server_arrays.clone(res_id=source_id)
 log.debug('New ServerArray %s created!' % new_array.soul['name'])
 return new_array

 @concurrent.run_on_executor
 @utils.exception_logger
 def destroy_server_array(self, array):
 """Destroys a Server Array.

 Makes this API Call:

 http://reference.rightscale.com/api1.5/resources/
 ResourceServerArrays.html#destroy

 Args:
 array: ServerArray Resource Object
 """
 log.debug('Destroying ServerArray %s' % array.soul['name'])
 array_id = self.get_res_id(array)
 self._client.server_arrays.destroy(res_id=array_id)
 log.debug('Array Destroyed')

 @concurrent.run_on_executor
 @utils.exception_logger
 def update(self, resource, params):
 """Updates a RightScale resource with the supplied parameters.

 Valid parameters can be found at the following URL:

 http://reference.rightscale.com/api1.5/resources/
 ResourceServerArrays.html#update
 http://reference.rightscale.com/api1.5/resources/
 ResourceInstances.html#update

 Args:
 resource: rightscale.Resource object to update.
 params: The parameters to update. eg:
 { 'server_array[name]': 'new name' }

 Returns:
 <updated rightscale array object>
 """

 log.debug('Patching %s with new params: %s' %
 (resource.soul['name'], params))
 resource.self.update(params=params)
 updated_resource = resource.self.show()
 return updated_resource

 @concurrent.run_on_executor
 @utils.exception_logger
 def get_server_array_inputs(self, array):
 """Looks up ServerArray 'Next Instance' inputs.

 Valid parameters can be found at the following URL:

 http://reference.rightscale.com/api1.5/resources/
 ResourceInputs.html#index

 Args: rightscale.Resource array object.
 Returns:
 List of rightscale.Resource input objects.
 """
 instance = array.next_instance.show()
 all_inputs = instance.inputs.index()

 return all_inputs

 @concurrent.run_on_executor
 @utils.exception_logger
 def update_server_array_inputs(self, array, inputs):
 """Updates a ServerArray 'Next Instance' with the supplied inputs.

 Valid parameters can be found at the following URL:

 http://reference.rightscale.com/api1.5/resources/
 ResourceInputs.html#multi_update

 Note: Its impossible to tell whether the update has succeeded because
 the RightScale API always returns a '204 No Content' message on the
 multi_update() call. Therefore, we simply execute the command return.

 Args:
 array: rightscale.Resource object to update.
 inputs: The parameters to update. eg:
 { 'inputs[ELB_NAME]': 'text:foobar' }
 """

 log.debug('Patching ServerArray (%s) with new inputs: %s' %
 (array.soul['name'], inputs))

 next_inst = array.next_instance.show()
 next_inst.inputs.multi_update(params=inputs)

 @concurrent.run_on_executor
 @sync_retry(**settings.RETRYING_SETTINGS)
 @utils.exception_logger
 def launch_server_array(self, array, count=1):
 """Launches an instance of a ServerArray..

 Makes this API Call:

 http://reference.rightscale.com/api1.5/resources/
 ResourceServerArrays.html#launch

 Note: Repeated simultaneous calls to this method on the same array will
 return 422 errors from RightScale. It is advised that you make this
 call synchronously on a particular array as many times as you need.
 This method is wrapped in a retry block though to help handle these
 errors anyways.

 Args:
 array: ServerArray Resource Object
 count: Instances to launch (default: 1)

 Returns:
 rightscale.Resource of the newly launched instance>
 """
 if not count or count < 1:
 return

 # The RightScale API supports sending in a 'count' to launch many
 # servers at once. This is only functional though if you submit a count
 # of > 1. Otherwise, it fails.
 params = None
 if count > 1:
 params = {'count': count}

 log.debug('Launching a new instance of ServerArray %s' %
 array.soul['name'])
 array_id = self.get_res_id(array)
 return self._client.server_arrays.launch(
 res_id=array_id, params=params)

 @concurrent.run_on_executor
 @sync_retry(**settings.RETRYING_SETTINGS)
 @utils.exception_logger
 def get_server_array_current_instances(
 self, array, filters=['state<>terminated']):
 """Returns a list of ServerArray current running instances.

 Makes this API Call:

 http://reference.rightscale.com/api1.5/resources/
 ResourceServerArrays.html#current_instances

 Valid Filters:

 http://reference.rightscale.com/api1.5/resources/
 ResourceInstances.html#index_filters

 Args:
 array: rightscale.Resource object to count
 filters: List of filters to use to find instances.

 Returns:
 [<list of rightscale.Resource objects>]
 """
 log.debug('Searching for current instances of ServerArray (%s)' %
 array.soul['name'])
 params = {'filter[]': filters}
 return array.current_instances.index(params=params)

 @concurrent.run_on_executor
 @utils.exception_logger
 def terminate_server_array_instances(self, array):
 """Executes a terminate on all of the current running instances.

 Makes this API Call:

 http://reference.rightscale.com/api1.5/resources/
 ResourceServerArrays.html#multi_terminate

 Returns as soon as RightScale claims that the operation is completed --
 but this only means that the servers have been 'told' to shut down, not
 that they are actually terminated yet.

 Args:
 array: ServerArray Resource Object

 Return:
 <task object for termination request>
 """
 log.debug('Terminating all instances of ServerArray (%s)' %
 array.soul['name'])
 array_id = self.get_res_id(array)
 try:
 task = self._client.server_arrays.multi_terminate(res_id=array_id)
 except requests.exceptions.HTTPError as e:
 if e.response.status_code == 422:
 # There are no instances to terminate.
 return

 return task

 @gen.coroutine
 def wait_for_task(self,
 task,
 task_name=None,
 sleep=5,
 loc_log=log,
 instance=None):
 """Monitors a RightScale task for completion.

 RightScale tasks are provided as URLs that we can query for the
 run-status of the task. This method repeatedly queries a task for
 completion (every 5 seconds), and returns when the task has finished.

 TODO: Add a task-timeout option.

 Note: This is a completely retryable operation in the event that an
 intermittent network connection causes any kind of a connection
 failure.

 Args:
 task: RightScale Task resource object.
 task_name: Human-readable name of the task to be executed.
 sleep: Integer of seconds to wait before the first status check.
 loc_log: logging.getLogger() object to be used to log task status.
 This is useful when this API call is called from a Kingpin
 actor, and you want to use the actor's specific logger.
 If nothing is passed - local `log` object is used.
 instance: RightScale instance object on which the task is executed.

 Returns:
 bool: success status
 """

 if not task:
 # If there is no task to wait on - don't wait!
 raise gen.Return(True)

 timeout_id = None
 if task_name:
 timeout_id = utils.create_repeating_log(
 loc_log.info, 'Still waiting on %s' % task_name, seconds=sleep)

 # Tracking when the tasks start so we can search by date later
 # RightScale expects the time to be a string in UTC
 now = datetime.utcnow()
 tasks_start = now.strftime('%Y/%m/%d %H:%M:%S +0000')

 while True:
 # Get the task status
 output = yield self._get_task_info(task)
 summary = output.soul['summary']
 stamp = datetime.now()

 if 'success' in summary or 'completed' in summary:
 status = True
 break

 if 'failed' in summary:
 status = False
 break

 loc_log.debug('Task (%s) status: %s (updated at: %s)' %
 (output.path, output.soul['summary'], stamp))

 yield utils.tornado_sleep(min(sleep, 5))

 loc_log.debug('Task (%s) status: %s (updated at: %s)' %
 (output.path, output.soul['summary'], stamp))

 if timeout_id:
 utils.clear_repeating_log(timeout_id)

 if status is True:
 raise gen.Return(True)

 if not instance:
 raise gen.Return(status)

 # If something failed we want to find out why -- get audit logs

 # Contact RightScale for audit logs of this instance.
 now = datetime.utcnow()
 tasks_finish = now.strftime('%Y/%m/%d %H:%M:%S +0000')

 loc_log.error('Task failed. Instance: "%s".' % instance.soul['name'])

 audit_logs = yield self.get_audit_logs(
 instance=instance,
 start=tasks_start,
 end=tasks_finish,
 match='failed')

 # Print every audit log that was obtained (may be 0)
 [loc_log.error(l) for l in audit_logs]

 if not audit_logs:
 loc_log.error('No audit logs for %s' % instance)

 loc_log.debug('Task finished, return value: %s, summary: %s' %
 (status, summary))

 raise gen.Return(status)

 @concurrent.run_on_executor
 @sync_retry(**settings.RETRYING_SETTINGS)
 @utils.exception_logger
 def _get_task_info(self, task):
 """Fetch data for a particular RightScale task.

 This is a blocking, non-tornado operation. It's separated into its own
 function to be run on a separate thread.
 """
 return task.self.show()

 @concurrent.run_on_executor
 @sync_retry(**settings.RETRYING_SETTINGS)
 @utils.exception_logger
 def get_audit_logs(self, instance, start, end, match=None):
 """Fetch a set of audit logs belonging to an instance.

 http://reference.rightscale.com/api1.5/resources/
 ResourceAuditEntries.html

 Args:
 instance: RightScale instance object.
 start: String as expected by start_date of the API
 e.g., 2011/06/25 00:00:00 +0000.
 end: String as expected by end_date of the API.
 match: optional string to match the summary of the audit entry.
 Only audit entries with this string will be returned.

 Returns:
 list of audit entries between the start and end date that match
 a substring in the summary. May return an empty list.

 """

 href = instance.links['self']
 all_entries = self._client.audit_entries.index(params={
 'filter[]': ['auditee_href==%s' % href],
 'limit': 10,
 'start_date': start,
 'end_date': end
 })

 log.debug('Found %s audit logs.' % len(all_entries))

 logs = []
 for entry in all_entries:
 summary = entry.soul['summary']
 if match and match not in summary:
 log.debug('Skipping details for "%s"' % summary)
 continue
 log.debug('Fetching details for "%s"' % summary)

 # grabbing raw output because RightScale doesn't reply via JSON
 # when accessing details of a log.
 detail_res = self._client.client.get(entry.detail.path)
 details = detail_res.raw_response.text

 logs.append(details)

 return logs

 @gen.coroutine
 def run_executable_on_instances(self, name, inputs, instances):
 """Execute a script on a set of RightScale Instances.

 This method bypasses the python-rightscale native properties and
 callable methods because they are broken with regards to running
 individual API calls against instances. See this bug:

 https://github.com/brantai/python-rightscale/issues/6

 Instead, we take in a list of rightscale.Resource objects that point to
 instances. For each instance we iterate over and directly call the
 <instance_path>/run_executable URL. This is done below in the
 make_generic_request() method for us.

 Note, the inputs dictionary should look like this:
 { '' }

 Args:
 name: Recipe or RightScript String Name
 inputs: Dict of Key/Value Input Pairs
 instances: A list of rightscale.Resource instances objects.

 Returns:
 list of tuples - (instance, <rightscale.Resource task object>)
 """
 # Create a new copy of the inputs that were passed in so that we can
 # modify them correctly and safely.
 params = dict(inputs)

 # Determine whether we're looking for a recipe or a rightscript. If its
 # the latter, we have to go and find its href identifier first.
 if '::' in name:
 script_type = 'Recipe'
 params['recipe_name'] = name
 else:
 script_type = 'RightScript'
 script = yield self.find_right_script(name)

 if not script:
 raise ServerArrayException('RightScript Not Found')

 params['right_script_href'] = script.href

 log.debug('Executing %s with params: %s' % (script_type, params))

 # Walk through the list of instances and fire off the execution on each
 # instance. For each execution, we will store a reference to the
 # instane itself, and the task thats executing. Note, as soon as we
 # call the make_generic_request() method, a thread is fired off and
 # begins acting on that request. Outside of this loop (below), we will
 # iterate over the responses to these requests.
 task_pairs = []
 for i in instances:
 log.debug('Executing %s on %s' % (name, i.soul['name']))
 url = '%s/run_executable' % i.links['self']
 req = self.make_generic_request(url, post=params)
 task_pairs.append((i, req))

 # At this point, all of our tasks are executing in the background. We
 # can now yield on each task *individually* in order to get the "result
 # object" back. This looks synchronous, but remember that the real API
 # calls are actually happening in the background simultaneously.
 yielded_tasks = []
 exceptions_caught = []
 for (i, task) in task_pairs:
 try:
 result = yield task
 yielded_tasks.append((i, result))
 except requests.exceptions.HTTPError as e:
 msg = ('Failed to queue execution on %s: %s' %
 (i.soul['name'], e))
 exceptions_caught.append(msg)

 # Rather than a single try/except and raising a group of exceptions,
 # Tornado's 'multi_future' method raises the first exception in a list
 # of tasks. This behavior is described in a bug, and we are working
 # with the Tornado team to try to come up with a reasonable solution.
 # Until then, we do this hackery to create a single exception from
 # many, and then raise that exception:
 #
 # https://github.com/tornadoweb/tornado/issues/1378
 if exceptions_caught:
 exc_string = ', '.join(exceptions_caught)
 exc_length = len(exceptions_caught)
 raise ServerArrayException('%s failures: %s' %
 (exc_length, exc_string))

 raise gen.Return(yielded_tasks)

 @concurrent.run_on_executor
 @sync_retry(**settings.RETRYING_SETTINGS)
 def make_generic_request(self, url, post=None):
 """Make a generic API call and return a Resource Object.

 This method is a bit hacky. It manually executes a REST call against
 the RightScale API and then attempts to build a custom
 rightscale.Resource object based on those return results. This allows
 us to support API calls that the current python-rightscale library does
 not currently support (like running an executable on an instance of an
 array).

 Args:
 url: String of the URL to call
 post: Optional POST Body Data

 Returns:
 <rightscale.Resource objects>
 """
 # Make the initial web call
 log.debug('Making generic API call: %s (%s)' % (url, post))

 # Here we're reaching into the rightscale client library and getting
 # access directly to its requests client object.
 if post:
 response = self._client.client.post(url, data=post)
 else:
 response = self._client.client.get(url)

 # Now, if a location tag was returned to us, follow it and get the
 # newly returned response data
 loc = response.headers.get('location', None)
 if loc:
 response = self._client.client.get(loc)
 url = loc

 # Try to parse the JSON body. If no body was returned, this fails and
 # thats OK sometimes.
 try:
 soul = response.json()
 except simplejson.scanner.JSONDecodeError:
 log.debug('No JSON found. Returning None')
 return

 # Now dig deep into the python rightscale library itself and create our
 # own Resource object by hand.
 resource = rightscale.rightscale.Resource(
 path=url,
 response=response,
 soul=soul,
 client=self._client.client)

 return resource

 © Copyright 2015, Nextdoor.
 Created using Sphinx 1.4.

_modules/kingpin/actors/rightscale/deployment.html

 Navigation

 		
 index

 		
 modules |

 		Kingpin 0.4.0 documentation »

 		Module code »

 Source code for kingpin.actors.rightscale.deployment

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#
Copyright 2014 Nextdoor.com, Inc

"""
:mod:`kingpin.actors.rightscale.deployment`
^^^

.. _Deployments:
 http://reference.rightscale.com/api1.5/resources/ResourceDeployments.html
"""

import logging

from tornado import gen

from kingpin.actors import exceptions
from kingpin.actors.rightscale import base
from kingpin.constants import REQUIRED

log = logging.getLogger(__name__)

__author__ = 'Mikhail Simin <mikhail@nextdoor.com>'

class DeploymentBaseActor(base.RightScaleBaseActor):

 """Abstract Deployment Actor that provides some utility methods."""

 @gen.coroutine
 def _find_deployment(self, name):

 dep = yield self._client.find_by_name_and_keys(
 collection=self._client._client.deployments,
 name=name)

 raise gen.Return(dep)

[docs]class Create(DeploymentBaseActor):

 """Creates a RightScale deployment.

 Options match the documentation in RightScale:
 http://reference.rightscale.com/api1.5/resources/ResourceDeployments.html

 Options

 :name:
 The name of the deployment to be created.

 :description:
 The description of the deployment to be created.
 (*optional*)

 :server_tag_scope:
 The routing scope for tags for servers in the deployment.
 Can be 'deployment' or 'account'
 (*optional*, default: deployment)
 """

 all_options = {
 'name': (str, REQUIRED, 'The name of the deployment to be created.'),
 'description': (
 str, '',
 'The description of the deployment to be created.'),
 'server_tag_scope': (
 str, '',
 'The routing scope for tags for servers in the deployment.')
 }

 def __init__(self, *args, **kwargs):
 """Validate the user-supplied parameters at instantiation time."""

 super(Create, self).__init__(*args, **kwargs)

 allowed_scopes = ('deployment', 'account', '')

 scope = self.option('server_tag_scope')
 if scope not in allowed_scopes:
 raise exceptions.InvalidOptions(
 'server_tag_scope "%s" is not one of: %s' % (scope,
 allowed_scopes))

 @gen.coroutine
 def _execute(self):

 dep = yield self._find_deployment(self.option('name'))
 if dep:
 raise exceptions.InvalidOptions(
 'Deployment "%s" already exists.' % self.option('name'))

 params = {'name': self.option('name'),
 'description': self.option('description')}

 if self.option('server_tag_scope'):
 params['server_tag_scope'] = self.option('server_tag_scope')

 params = self._generate_rightscale_params('deployment', params)

 if self._dry:
 self.log.info('Would create a deployment %s' % self.option('name'))
 self.log.debug('Deployment params: %s' % params)
 raise gen.Return()

 self.log.info('Creating deployment %s' % self.option('name'))

 yield self._client.create_resource(
 self._client._client.deployments, params)

[docs]class Destroy(DeploymentBaseActor):

 """Deletes a RightScale deployment.

 Options match the documentation in RightScale:
 http://reference.rightscale.com/api1.5/resources/ResourceDeployments.html

 Options

 :name:
 The name of the deployment to be deleted.
 """

 all_options = {
 'name': (str, REQUIRED, 'The name of the deployment to be deleted.'),
 }

 @gen.coroutine
 def _execute(self):

 dep = yield self._find_deployment(self.option('name'))
 if not dep:
 raise exceptions.InvalidOptions(
 'Deployment "%s" does not exist.' % self.option('name'))

 info = (yield self._client.show(dep.self)).soul

 if self._dry:
 self.log.info('Would delete deployment %s' % info['name'])
 raise gen.Return()

 self.log.info('Deleting deployment %s' % info['name'])
 yield self._client.destroy_resource(dep)

 © Copyright 2015, Nextdoor.
 Created using Sphinx 1.4.

_static/file.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/comment-bright.png

_static/down.png

_static/up.png

_static/comment-close.png

_modules/kingpin/actors/rightscale/base.html

 Navigation

 		
 index

 		
 modules |

 		Kingpin 0.4.0 documentation »

 		Module code »

 Source code for kingpin.actors.rightscale.base

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#
Copyright 2014 Nextdoor.com, Inc

"""
:mod:`kingpin.actors.rightscale.base`
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The RightScale Actors allow you to interact with resources inside your
Rightscale account. These actors all support dry runs properly, but each
actor has its own caveats with ``dry=True``. Please read the instructions
below for using each actor.

Required Environment Variables

:RIGHTSCALE_TOKEN:
 RightScale API Refresh Token
 (from the *Account Settings/API Credentials* page)

:RIGHTSCALE_ENDPOINT:
 Your account-specific API Endpoint
 (defaults to https://my.rightscale.com)
"""

from random import randint
import collections
import logging
import os

from tornado import gen
import mock

from kingpin.actors import base
from kingpin.actors import exceptions
from kingpin.actors.rightscale import api

log = logging.getLogger(__name__)

__author__ = 'Matt Wise <matt@nextdoor.com>'

TOKEN = os.getenv('RIGHTSCALE_TOKEN', None)
ENDPOINT = os.getenv('RIGHTSCALE_ENDPOINT', 'https://my.rightscale.com')

[docs]class ArrayNotFound(exceptions.RecoverableActorFailure):

 """Raised when a ServerArray could not be found."""

[docs]class ArrayAlreadyExists(exceptions.RecoverableActorFailure):

 """Raised when a ServerArray already exists by a given name."""

[docs]class RightScaleBaseActor(base.BaseActor):

 """Abstract class for creating RightScale cloud actors."""

 def __init__(self, *args, **kwargs):
 """Initializes the Actor."""
 super(RightScaleBaseActor, self).__init__(*args, **kwargs)

 if not TOKEN:
 raise exceptions.InvalidCredentials(
 'Missing the "RIGHTSCALE_TOKEN" environment variable.')

 self._client = api.RightScale(token=TOKEN, endpoint=ENDPOINT)

 @gen.coroutine
 def _find_server_arrays(self, array_name,
 raise_on='notfound',
 allow_mock=True,
 exact=True):
 """Find a ServerArray by name and return it.

 Args:
 array_name: String name of the ServerArray to find.
 raise_on: Either None, 'notfound' or 'found'
 allow_mock: Boolean whether or not to allow a Mock object to be
 returned instead.
 exact: Boolean whether or not to allow multiple arrays to be
 returned.

 Raises:
 gen.Return(<rightscale.Resource of Server Array>)
 ArrayNotFound()
 ArrayAlreadyExists()
 """
 if raise_on == 'notfound':
 msg = 'Verifying that array "%s" exists' % array_name
 elif raise_on == 'found':
 msg = 'Verifying that array "%s" does not exist' % array_name
 elif not raise_on:
 msg = 'Searching for array named "%s"' % array_name
 else:
 raise exceptions.UnrecoverableActorFailure(
 'Invalid "raise_on" setting in actor code.')

 self.log.debug(msg)
 array = yield self._client.find_server_arrays(array_name, exact=exact)

 if not array and self._dry and allow_mock:
 # Create a fake ServerArray object thats mocked up to help with
 # execution of the rest of the code.
 self.log.info('Array "%s" not found -- creating a mock.' %
 array_name)
 array = mock.MagicMock(name=array_name)
 # Give the mock a real identity and give it valid elasticity
 # parameters so the Launch() actor can behave properly.
 array.soul = {
 # Used elsewhere to know whether we're working on a mock
 'fake': True,

 # Fake out common server array object properties
 'name': '<mocked array %s>' % array_name,
 'elasticity_params': {'bounds': {'min_count': 4}}
 }
 array.self.path = '/fake/array/%s' % randint(10000, 20000)
 array.self.show.return_value = array

 if array and raise_on == 'found':
 raise ArrayAlreadyExists('Array "%s" already exists!' % array_name)

 if not array and raise_on == 'notfound':
 raise ArrayNotFound('Array "%s" not found!' % array_name)

 # Quick note. If many arrays were returned, lets make sure we throw a
 # note to the user so they know whats going on.
 if isinstance(array, list):
 for a in array:
 self.log.info('Matching array found: %s' % a.soul['name'])

 raise gen.Return(array)

 def _generate_rightscale_params(self, prefix, params):
 """Utility function for creating RightScale-style parameters.

 RightScale takes inputs in the form of a hash of key/value pairs, but
 these pairs are in a strange pseudo-dict form. This method takes a
 standard hash and converts it into a rightscale-compatible form.

 For example, take this dict:

 {'name': 'unittest-name',
 'bounds': { 'min_count': 3}

 We return:

 [('server_array[name]', 'unittest-name'),
 ('server_array[bounds][min_count]', '3)]

 For more examples, see our unit tests.

 Args:
 prefix: The key-prefix to use (ie, 'server_array')
 params: The dictionary to squash

 Returns:
 A list of tuples of key/value pairs.
 """
 if not type(params) == dict:
 raise exceptions.InvalidOptions(
 'Parameters passed in must be in the form of a dict.')

 # Nested loop that compresses a multi level dictinary into a flat
 # array of key=value strings.
 def flatten(d, parent_key=prefix, sep='_'):
 items = []

 if isinstance(d, collections.MutableMapping):
 # If a dict is passed in, break it into its items and
 # then iterate over them.
 for k, v in d.items():
 new_key = parent_key + '[' + k + ']' if parent_key else k
 items.extend(flatten(v, new_key))
 elif isinstance(d, list):
 # If an array was passed in, then iterate over the array
 new_key = parent_key + '[]' if parent_key else k
 for item in d:
 items.extend(flatten(item, new_key))
 else:
 items.append((parent_key, d))

 return items

 return flatten(params)

 © Copyright 2015, Nextdoor.
 Created using Sphinx 1.4.

_static/down-pressed.png

_static/comment.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		Kingpin 0.4.0 documentation »

 All modules for which code is available

		kingpin.actors.aws.base

		kingpin.actors.aws.cloudformation

		kingpin.actors.aws.elb

		kingpin.actors.aws.iam.certs

		kingpin.actors.aws.iam.entities

		kingpin.actors.aws.s3

		kingpin.actors.aws.settings

		kingpin.actors.aws.sqs

		kingpin.actors.base

		kingpin.actors.exceptions

		kingpin.actors.group

		kingpin.actors.hipchat

		kingpin.actors.librato

		kingpin.actors.misc

		kingpin.actors.packagecloud

		kingpin.actors.pingdom

		kingpin.actors.rightscale.alerts

		kingpin.actors.rightscale.api

		kingpin.actors.rightscale.base

		kingpin.actors.rightscale.deployment

		kingpin.actors.rightscale.mci

		kingpin.actors.rightscale.server_array

		kingpin.actors.rollbar

		kingpin.actors.slack

		kingpin.actors.support.api

		kingpin.actors.utils

		kingpin.constants

		kingpin.exceptions

		kingpin.schema

		kingpin.utils

 © Copyright 2015, Nextdoor.
 Created using Sphinx 1.4.

_modules/kingpin/utils.html

 Navigation

 		
 index

 		
 modules |

 		Kingpin 0.4.0 documentation »

 		Module code »

 Source code for kingpin.utils

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#
Copyright 2013 Nextdoor.com, Inc.

"""
:mod:`kingpin.utils`
^^^^^^^^^^^^^^^^^^^^

Common package for utility functions.
"""

from logging import handlers
import datetime
import demjson
import functools
import importlib
import logging
import os
import re
import sys
import yaml
import time

from tornado import gen
from tornado import ioloop
import httplib
import rainbow_logging_handler

from kingpin import exceptions

__author__ = 'Matt Wise (matt@nextdoor.com)'

log = logging.getLogger(__name__)

Constants for some of the utilities below
STATIC_PATH_NAME = 'static'

Disable the global threadpool defined here to try to narrow down the random
unit test failures regarding the IOError. Instead, instantiating a new
threadpool object for every thread using the 'with' context below.
#
Allow up to 10 threads to be executed at once. This is arbitrary, but we
want to prvent the app from going thread-crazy.
THREADPOOL_SIZE = 10
THREADPOOL = futures.ThreadPoolExecutor(THREADPOOL_SIZE)

[docs]def str_to_class(string):
 """Method that converts a string name into a usable Class name

 This is used to take the 'actor' value from the JSON object and convert it
 into a valid object reference.

 Args:
 cls: String name of the wanted class and package.
 eg: kingpin.actors.foo.bar
 eg: misc.Sleep
 eg: actors.misc.Sleep
 eg: my.private.Actor

 Returns:
 A reference to the actual Class to be instantiated
 """
 # Split the string up. The last element is the Class, the rest is
 # the package name.
 string_elements = string.split('.')
 class_name = string_elements.pop()
 module_name = '.'.join(string_elements)

 m = importlib.import_module(module_name)
 return getattr(m, class_name)

[docs]def setup_root_logger(level='warn', syslog=None, color=False):
 """Configures the root logger.

 Args:
 level: Logging level string ('warn' is default)
 syslog: String representing syslog facility to output to. If empty,
 logs are written to console.
 color: Colorize the log output

 Returns:
 A root Logger object
 """

 # Get the logging level string -> object
 level = 'logging.%s' % level.upper()
 level_obj = str_to_class(level)

 # Get our logger
 logger = logging.getLogger()

 # Set our default logging level
 logger.setLevel(level_obj)

 # Set the default logging handler to stream to console..
 if color:
 # Patch the handler's 'is_tty()' method to return True. If the user
 # asked for color, we give them color. The is_tty() method calls the
 # sys.stdout.isatty() method and then refuses to give color output on
 # platforms like Jenkins, where this code is likely to be run.
 rainbow_logging_handler.RainbowLoggingHandler.is_tty = True

 handler = rainbow_logging_handler.RainbowLoggingHandler(
 sys.stdout,

 # Disable colorization of the 'info' log statements. If the code is
 # run in an environment like Jenkins, the background is white, and
 # we don't want to force these log lines to be white as well.
 color_message_info=(None, None, False)
)
 else:
 handler = logging.StreamHandler()

 # Get our PID .. used below in the log line format.
 details = ''
 if level_obj <= 10:
 details = str(os.getpid()) + ' [%(name)-40s] [%(funcName)-20s]'

 # If syslog enabled, then override the logging handler to go to syslog.
 asctime = '%(asctime)-10s '
 if syslog is not None:
 asctime = ''
 handler = handlers.SysLogHandler(address=('127.0.0.1', 514),
 facility=syslog)

 fmt = asctime + '%(levelname)-8s ' + details + ' %(message)s'
 formatter = logging.Formatter(fmt)

 # Append the formatter to the handler, then set the handler as our default
 # handler for the root logger.
 handler.setFormatter(formatter)
 logger.addHandler(handler)

 return logger

[docs]def super_httplib_debug_logging():
 """Enables DEBUG logging deep in HTTPLIB.

 HTTPLib by default doens't log out things like the raw HTTP headers,
 cookies, response body, etc -- even when your main logger is in DEBUG mode.
 This is because its a security risk, as well as just highly verbose.

 For the purposes of debugging though, this can be useful. This method
 enables deep debug logging of the HTTPLib web requests. This is highly
 insecure, but very useful when troubleshooting failures with remote API
 endpoints.

 Returns:
 Requests 'logger' object (mainly for unit testing)
 """
 httplib.HTTPConnection.debuglevel = 1
 requests_log = logging.getLogger("requests.packages.urllib3")
 requests_log.propagate = True
 requests_log.setLevel(logging.DEBUG)
 return requests_log

[docs]def exception_logger(func):
 """Explicitly log Exceptions then Raise them.

 Logging Exceptions and Tracebacks while inside of a thread is broken in the
 Tornado futures package for Python 2.7. It swallows most of the traceback
 and only gives you the raw exception object. This little helper method
 allows us to throw a log entry with the full traceback before raising the
 exception.
 """
 @functools.wraps(func)
 def wrapper(*args, **kwargs):
 try:
 return func(*args, **kwargs)
 except Exception as e:
 log.debug('Exception caught in %s(%s, %s): %s' %
 (func, args, kwargs, e), exc_info=1)
 raise
 return wrapper

[docs]def retry(excs, retries=3, delay=0.25):
 """Coroutine-compatible Retry Decorator.

 This decorator provides a simple retry mechanism that looks for a
 particular set of exceptions and retries async tasks in the event that
 those exceptions were caught.

 Example usage:
 >>> @gen.coroutine
 ... @retry(excs=(Exception), retries=3)
 ... def login(self):
 ... raise gen.Return()

 Args:
 excs: A single (or tuple) exception type to catch.
 retries: The number of times to try the operation in total.
 delay: Time (in seconds) to wait between retries
 """
 def _retry_on_exc(f):
 def wrapper(*args, **kwargs):
 i = 1
 while True:
 try:
 # Don't log the first time..
 if i > 1:
 log.debug('Try (%s/%s) of %s(%s, %s)' %
 (i, retries, f, args, kwargs))
 ret = yield gen.coroutine(f)(*args, **kwargs)
 log.debug('Result: %s' % ret)
 raise gen.Return(ret)
 except excs as e:
 log.error('Exception raised on try %s: %s' % (i, e))

 if i >= retries:
 log.debug('Raising exception: %s' % e)
 raise e

 i += 1
 log.debug('Retrying in %s...' % delay)
 yield tornado_sleep(delay)
 log.debug('Retrying..')
 return wrapper
 return _retry_on_exc

@gen.coroutine
[docs]def tornado_sleep(seconds=1.0):
 """Async method equivalent to sleeping.

 Args:
 seconds: Float seconds. Default 1.0
 """
 yield gen.Task(ioloop.IOLoop.current().add_timeout,
 time.time() + seconds)

[docs]def populate_with_tokens(string, tokens, left_wrapper='%', right_wrapper='%',
 strict=True):
 """Insert token variables into the string.

 Will match any token wrapped in '%'s and replace it with the value of that
 token.

 Args:
 string: string to modify.
 tokens: dictionary of key:value pairs to inject into the string.
 left_wrapper: the character to use as the START of a token
 right_wrapper: the character to use as the END of a token
 strict: (bool) whether or not to make sure all tokens were replaced

 Example:
 export ME=biz

 string='foo %ME% %bar%'
 populate_with_tokens(string, os.environ) # 'foo biz %bar%'
 """

 # First things first, swap out all instances of %<str>% with any matching
 # token variables found. If no items are in the hash (none, empty hash,
 # etc), then skip this.
 allowed_types = (str, unicode, bool, int, float)
 if tokens:
 for k, v in tokens.iteritems():

 if type(v) not in allowed_types:
 log.warning('Token %s=%s is not in allowed types: %s' % (
 k, v, allowed_types))
 continue

 string = string.replace(
 ('%s%s%s' % (left_wrapper, k, right_wrapper)), str(v))

 # If we aren't strict, we return...
 if not strict:
 return string

 # If we are strict, we check if we missed anything. If we did, raise an
 # exception.
 missed_tokens = list(set(re.findall(r'%s[\w]+%s' %
 (left_wrapper, right_wrapper), string)))
 if missed_tokens:
 raise LookupError(
 'Found un-matched tokens in JSON string: %s' % missed_tokens)

 return string

[docs]def convert_script_to_dict(script_file, tokens):
 """Converts a JSON file to a config dict.

 Reads in a JSON file, swaps out any environment variables that
 have been used inside the JSON, and then returns a dictionary.

 Args:
 script_file: Path to the JSON/YAML file to import, or file instance.
 tokens: dictionary to pass to populate_with_tokens.

 Returns:
 <Dictonary of Config Data>

 Raises:
 kingpin.exceptions.InvalidScript
 """

 filename = ''
 try:
 if type(script_file) in (str, unicode):
 filename = script_file
 instance = open(script_file)
 elif type(script_file) is file:
 filename = script_file.name
 instance = script_file
 else:
 filename = str(script_file)
 instance = script_file
 except IOError as e:
 raise exceptions.InvalidScript('Error reading script %s: %s' %
 (script_file, e))

 raw = instance.read()
 parsed = populate_with_tokens(raw, tokens)

 # If the file ends with .json, use demjson to read it. If it ends with
 # .yml/.yaml, use PyYAML. If neither, error.
 suffix = filename.split('.')[-1].strip().lower()
 try:
 if suffix == 'json':
 decoded = demjson.decode(parsed)
 elif suffix in ('yml', 'yaml'):
 decoded = yaml.safe_load(parsed)
 if decoded is None:
 raise exceptions.InvalidScript(
 'Invalid YAML in `%s`' % filename)
 else:
 raise exceptions.InvalidScriptName(
 'Invalid file extension: %s' % suffix)
 except demjson.JSONError as e:
 # demjson exceptions have `pretty_description()` method with
 # much more useful info.
 raise exceptions.InvalidScript('JSON in `%s` has an error: %s' % (
 filename, e.pretty_description()))
 return decoded

[docs]def order_dict(obj):
 """Re-orders a dict into a predictable pattern.

 Used so that you can compare two dicts with the same values, but that were
 created in different orders.

 Stolen from:
 http://stackoverflow.com/questions/25851183/how-to-compare-two-json-
 objects-with-the-same-elements-in-a-different-order-equa

 args:
 obj: Object to order

 returns:
 obj: A sorted version of the object
 """
 if isinstance(obj, dict):
 return sorted((k, order_dict(v)) for k, v in obj.items())
 if isinstance(obj, list):
 return sorted(order_dict(x) for x in obj)
 else:
 return obj

[docs]def create_repeating_log(logger, message, handle=None, **kwargs):
 """Create a repeating log message.

 This function sets up tornado to repeatedly log a message in a way that
 does not need to be `yield`-ed.

 Example::

 >>> yield do_tornado_stuff(1)
 >>> log_handle = create_repeating_log('Computing...')
 >>> yield do_slow_computation_with_insufficient_logging()
 >>> clear_repeating_log(log_handle)

 This is similar to javascript's setInterval() and clearInterval().

 Args:
 message: String to pass to log.info()
 kwargs: values accepted by datetime.timedelta namely seconds, and
 milliseconds.

 Must be cleared via clear_repeating_log()
 Only handles one interval per actor.
 """

 class OpaqueHandle(object):

 """Tornado async io handler."""

 def __init__(self):
 self.timeout_id = None

 if not handle:
 handle = OpaqueHandle()

 def log_and_queue():
 logger(message)
 create_repeating_log(logger, message, handle, **kwargs)

 deadline = datetime.timedelta(**kwargs)
 # Here we only queue the call, we don't want to wait on it!
 timeout_id = ioloop.IOLoop.current().add_timeout(deadline, log_and_queue)
 handle.timeout_id = timeout_id

 return handle

[docs]def clear_repeating_log(handle):
 """Stops the timeout function from being called."""
 ioloop.IOLoop.current().remove_timeout(handle.timeout_id)

 © Copyright 2015, Nextdoor.
 Created using Sphinx 1.4.

_static/plus.png

_modules/kingpin/exceptions.html

 Navigation

 		
 index

 		
 modules |

 		Kingpin 0.4.0 documentation »

 		Module code »

 Source code for kingpin.exceptions

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#
Copyright 2014 Nextdoor.com, Inc

[docs]class KingpinException(Exception):

 """Base Exception """

[docs]class InvalidScript(KingpinException):

 """Raised when an invalid script schema was detected"""

[docs]class InvalidScriptName(KingpinException):

 """Raised when the script name does not end on .yaml or .json"""

 © Copyright 2015, Nextdoor.
 Created using Sphinx 1.4.

_modules/kingpin/actors/slack.html

 Navigation

 		
 index

 		
 modules |

 		Kingpin 0.4.0 documentation »

 		Module code »

 Source code for kingpin.actors.slack

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#
Copyright 2014 Nextdoor.com, Inc

"""
:mod:`kingpin.actors.slack`
^^^^^^^^^^^^^^^^^^^^^^^^^^^

The Slack Actors allow you to send messages to a Slack channel at stages during
your job execution. The actor supports dry mode by validating that the
configured API Token has access to execute the methods, without actually
sending the messages.

Required Environment Variables

:SLACK_TOKEN:
 Slack API Token

:SLACK_NAME:
 Slack *message from* name
 (defaults to *Kingpin*)
"""

import logging
import os
import re

from tornado import gen

from kingpin.constants import REQUIRED
from kingpin.actors import base
from kingpin.actors import exceptions
from kingpin.actors.support import api

log = logging.getLogger(__name__)

__author__ = 'Matt Wise <matt@nextdoor.com>'

TOKEN = os.getenv('SLACK_TOKEN', None)
NAME = os.getenv('SLACK_NAME', 'Kingpin')

class SlackAPI(api.RestConsumer):

 _ENDPOINT = 'https://api.slack.com'
 _CONFIG = {
 'attrs': {
 'auth_test': {
 'path': '/api/auth.test',
 'http_methods': {'post': {}},
 },
 'chat_postMessage': {
 'path': '/api/chat.postMessage',
 'http_methods': {'post': {}},
 }

 }
 }

[docs]class SlackBase(base.BaseActor):

 """Simple Slack Abstract Base Object"""

 def __init__(self, *args, **kwargs):
 """Check required environment variables."""
 super(SlackBase, self).__init__(*args, **kwargs)

 if not TOKEN:
 raise exceptions.InvalidCredentials(
 'Missing the "SLACK_TOKEN" environment variable.')

 rest_client = api.SimpleTokenRestClient(
 tokens={'token': TOKEN}
)
 self._slack_client = SlackAPI(client=rest_client)

 def _check_results(self, result):
 """Returns True/False if the result was OK from Slack.

 The Slack API avoids using standard error codes, and instead embeds
 error codes in the return results. This method returns True or False
 based on those results.

 Args:
 result: A return dict from Slack

 Raises:
 InvalidCredentials if the creds are bad
 RecoverableActorException on any other value
 """
 try:
 ok = result.get('ok', False)
 except AttributeError:
 raise exceptions.UnrecoverableActorFailure(
 'An unexpected Slack API failure occured: %s' % result)

 if ok:
 return

 # By default, our exception type is a RecoverableActorFailure.
 exc = exceptions.RecoverableActorFailure

 # If we know what kind fo error it is, we'll return a more accurate
 # exception type.
 if result['error'] == 'invalid_auth':
 exc = exceptions.InvalidCredentials

 # Finally, raise our exception
 raise exc('Slack API Error: %s' % result['error'])

[docs]class Message(SlackBase):

 """Sends a message to a channel in Slack.

 Options

 :channel:
 The string-name of the channel to send a message to, or a list of
 channels

 :message:
 String of the message to send

 Examples

 .. code-block:: json

 { "desc": "Let the Engineers know things are happening",
 "actor": "slack.Message",
 "options": {
 "channel": "#operations",
 "message": "Beginning Deploy: %VER%"
 }
 }

 Dry Mode

 Fully supported -- does not actually send messages to a room, but validates
 that the API credentials would have access to send the message using the
 Slack `auth.test` API method.
 """

 all_options = {
 'channel': ((str, list), REQUIRED, 'Slack channel or a list of names'),
 'message': (str, REQUIRED, 'Message to send')
 }

 desc = "Sending Message to {channel}"

 @gen.coroutine
 def _execute(self):
 self.log.info('Sending message "%s" to Slack channel "%s"' %
 (self.option('message'), self.option('channel')))

 if self._dry:
 # Check if our authentication creds are valid
 auth_ok = yield self._slack_client.auth_test().http_post()
 self._check_results(auth_ok)

 self.log.info('API Credentials verified, skipping send.')
 raise gen.Return()

 # If only one channel was supplied as string then prepare the list
 if type(self.option('channel')) == list:
 channels = self.option('channel')
 else:
 channels = re.split('[,]+', self.option('channel'))

 posts = []
 for channel in channels:
 self.log.debug('Posting to %s' % channel)
 # Finally, send the message and check our return value
 posts.append(self._slack_client.chat_postMessage().http_post(
 channel=channel,
 text=self.option('message'),
 username=NAME,
 parse='none',
 link_names=1,
 unfurl_links=True,
 unfurl_media=True
))

 results = yield posts
 for res in results:
 self._check_results(res)

 © Copyright 2015, Nextdoor.
 Created using Sphinx 1.4.

_modules/kingpin/constants.html

 Navigation

 		
 index

 		
 modules |

 		Kingpin 0.4.0 documentation »

 		Module code »

 Source code for kingpin.constants

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#
Copyright 2014 Nextdoor.com, Inc

import jsonschema

from kingpin.actors import exceptions

__author__ = 'Mikhail Simin <mikhail@nextdoor.com>'

[docs]class REQUIRED(object):

 """Meta class to identify required arguments for actors."""

[docs]class StringCompareBase(object):

 """Meta class to identify the desired state for a resource.

 This basic type of constant allows someone to easily define a set of valid
 strings for their option and have the base actor class automatically
 validate the inputs against those strings.
 """

 valid = None

 @classmethod
 def validate(self, option):
 if option not in self.valid:
 raise exceptions.InvalidOptions(
 '%s not valid, use: %s' % (option, self.valid))

[docs]class STATE(StringCompareBase):

 """Meta class to identify the desired state for a resource.

 Simple tester for 'present' or 'absent' on actors. Used for any actor thats
 idempotent and used to ensure some state of a resource.
 """

 valid = ('present', 'absent')

[docs]class SchemaCompareBase(object):

 """Meta class that compares the schema of a dict against rules."""

 SCHEMA = None

 @classmethod
 def validate(self, option):
 try:
 jsonschema.validate(option, self.SCHEMA)
 except jsonschema.exceptions.ValidationError as e:
 raise exceptions.InvalidOptions(
 'Supplied parameter does not match schema: %s' % e)

 © Copyright 2015, Nextdoor.
 Created using Sphinx 1.4.

_modules/kingpin/schema.html

 Navigation

 		
 index

 		
 modules |

 		Kingpin 0.4.0 documentation »

 		Module code »

 Source code for kingpin.schema

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#
Copyright 2014 Nextdoor.com, Inc

import jsonschema

from kingpin import exceptions

__author__ = 'Matt Wise <matt@nextdoor.com>'

ACTOR_SCHEMA = {
 'type': ['object'],
 'required': ['actor'],
 'additionalProperties': False,
 'properties': {
 'desc': {'type': 'string'},
 'actor': {'type': 'string'},
 'options': {
 # 'Options' are Actor specific. However, we validate some internal
 # option types here, if they are supplied.
 'type': 'object',

 # Since options are actor specific, ignore unexpected options.
 'additionalProperties': True,

 # Internally expected properties
 'properties': {
 # 'acts' are lists of actors that should be instantiated. Each
 # object should look like this actual schema (with a desc,
 # actor and option key)
 'acts': {
 'type': 'array',

 # This is a reference to 'self' ... in other words,
 # this array can only contain other SCHEMA_1_0 type
 # objets.
 'items': {'$ref': '#'},
 },
 },
 },

 # Not required. In code, will default to False.
 'warn_on_failure': {'type': ['boolean', 'string']},

 # Not required. In code, will default to <actor>.default_timeout
 'timeout': {'type': ['string', 'integer', 'number']},

 # Optional conditional to indicate to skip this actor.
 'condition': {'type': ['boolean', 'string'], 'default': True},
 }
}

SCHEMA_1_0 = {
 'definitions': {
 'actor': ACTOR_SCHEMA
 },

 'anyOf': [
 {'$ref': '#/definitions/actor'},
 {'type': 'array', 'items': {'$ref': '#/definitions/actor'}}
]
}

[docs]def validate(config):
 """Validates the JSON against our schemas.

 TODO: Support multiple schema versions

 Args:
 config: Dictionary of parsed JSON

 Returns:
 None: if all is well

 Raises:
 Execption if something went wrong.
 """
 try:
 return jsonschema.validate(config, SCHEMA_1_0)
 except jsonschema.exceptions.ValidationError as e:
 raise exceptions.InvalidScript(e)

 © Copyright 2015, Nextdoor.
 Created using Sphinx 1.4.

_modules/kingpin/actors/utils.html

 Navigation

 		
 index

 		
 modules |

 		Kingpin 0.4.0 documentation »

 		Module code »

 Source code for kingpin.actors.utils

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#
Copyright 2014 Nextdoor.com, Inc

"""
:mod:`kingpin.actors.utils`
^^^^^^^^^^^^^^^^^^^^^^^^^^^

Misc methods for dealing with Actors.
"""

import logging
import time

from tornado import gen

from kingpin import utils
from kingpin.actors import exceptions

log = logging.getLogger(__name__)

__author__ = 'Matt Wise <matt@nextdoor.com>'

[docs]def dry(dry_message):
 """Coroutine-compatible decorator to dry-run a method.

 Note: this must act on a :py:mod:`~kingpin.actors.base.BaseActor` object.

 Example usage as decorator:

 >>> @gen.coroutine
 ... @dry('Would have done that {thing}')
 ... def do_thing(self, thing):
 ... yield api.do_thing(thing)
 ...
 >>> yield do_thing(thing="yeah man, that thing")

 Args:
 dry_message: The message to print out instead of doing the actual
 function call. This string is passed through format(kwargs), so any
 variables you'd like can be substituted as long as they're passed to
 the method being wrapped.
 """
 # TODO: Bring these back when we have log.trace
 # log.debug('Creating _skip_on_dry decorator with "%s"' % dry_message)

 def _skip_on_dry(f):
 # TODO: Bring these back when we have log.trace
 # log.debug('Decorating function "%s" with _skip_on_dry' % f)

 def wrapper(self, *args, **kwargs):
 # _Always_ compile the message we'd use in the event of a Dry run.
 # This ensures that our test cases catch any time invalid **kwargs
 # are passed in.
 msg = dry_message.format(*args, **kwargs)

 if self._dry:
 self.log.warning(msg)
 raise gen.Return()
 ret = yield gen.coroutine(f)(self, *args, **kwargs)
 raise gen.Return(ret)

 return wrapper
 return _skip_on_dry

[docs]def timer(f):
 """Coroutine-compatible function timer.

 Records statistics about how long a given function took, and logs them
 out in debug statements. Used primarily for tracking Actor execute()
 methods, but can be used elsewhere as well.

 Note: this must act on a :py:mod:`~kingpin.actors.base.BaseActor` object.

 Example usage:
 >>> @gen.coroutine
 ... @timer()
 ... def execute(self):
 ... raise gen.Return()
 """

 def _wrap_in_timer(self, *args, **kwargs):
 # Log the start time
 start_time = time.time()

 # Begin the execution
 ret = yield gen.coroutine(f)(self, *args, **kwargs)

 # Log the finished execution time
 exec_time = "%.2f" % (time.time() - start_time)
 self.log.debug('%s.%s() execution time: %ss' %
 (self._type, f.__name__, exec_time))

 raise gen.Return(ret)
 return _wrap_in_timer

[docs]def get_actor(config, dry):
 """Returns an initialized Actor object.

 Args:
 config: A dictionary of configuration data that conforms to our v1
 schema in kingpin.schema. Looks like this:

 {
 'desc': <string description of actor>,
 'actor': <string name of actor>
 'options': <dict of options to pass to actor>
 'warn_on_failure': <bool>
 'condition': <string or bool>
 }

 dry: Boolean whether or not in Dry mode
 warn_on_failure: Boolean

 Returns:
 <actor object>
 """
 # Copy the supplied dict before we modify it below
 config = dict(config)

 # Get the name of the actor, and pull it out of the config because its
 # not a valid kwarg for an Actor object.
 actor_string = config.pop('actor')

 # Create a copy of the config dict, but strip out the tokens. They likely
 # contain credentials! This is used purely for this debug message below.
 #
 # Known actors that do this are misc.Macro, group.Sync, group.Async
 clean_config = config.copy()
 clean_config['init_tokens'] = '<hidden>'

 log.debug('Building Actor "%s" with args: %s' %
 (actor_string, clean_config))
 ActorClass = get_actor_class(actor_string)
 return ActorClass(dry=dry, **config)

[docs]def get_actor_class(actor):
 """Returns a Class Reference to an Actor by string name.

 Args:
 actor: String name of the actor to find.

 Returns:
 <Class Ref to Actor>
 """
 expected_exceptions = (AttributeError, ImportError, TypeError)

 # Try to load our local actors up first. Assume that the
 # 'kingpin.actors.' prefix was not included in the name.
 for prefix in ['kingpin.actors.', '', 'actors.']:
 full_actor = prefix + actor
 try:
 return utils.str_to_class(full_actor)
 except expected_exceptions as e:
 log.debug('Tried importing "%s" but failed: %s' % (full_actor, e))

 msg = 'Unable to import "%s" as a valid Actor.' % actor
 raise exceptions.InvalidActor(msg)

 © Copyright 2015, Nextdoor.
 Created using Sphinx 1.4.

_modules/kingpin/actors/base.html

 Navigation

 		
 index

 		
 modules |

 		Kingpin 0.4.0 documentation »

 		Module code »

 Source code for kingpin.actors.base

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#
Copyright 2014 Nextdoor.com, Inc

"""
:mod:`kingpin.actors.base`
^^^^^^^^^^^^^^^^^^^^^^^^^^

Base Actor object class

An Actor object is a class that executes a single logical action
on a resource as part of your deployment structure. For example, you
may have an Actor that launches a server array in RightScale, or you
may have one that sends an email.

Each Actor object should do one thing, and one thing only. Its responsible
for being able to execute the operation in both 'dry' and 'non-dry' modes.

The behavior for 'dry' mode can contain real API calls, but should not make
any live changes. It is up to the developer of the Actor to define what
'dry' mode looks like for that particular action.
"""

import json
import logging
import os
import sys
import time

from tornado import gen
from tornado import httpclient
from tornado import httputil

from kingpin import utils
from kingpin.actors import exceptions
from kingpin.actors.utils import timer
from kingpin.constants import REQUIRED

log = logging.getLogger(__name__)

__author__ = 'Matt Wise <matt@nextdoor.com>'

If super-debug logging is enabled, then we turn on the URLLIB3 HTTP
request logging. This is extremely verbose and insecure, but useful
for troubleshooting. URLLIB3 is used by several actors (aws, rightscale),
so we do this setup here in the base actor class.
if os.getenv('URLLIB_DEBUG', None):
 utils.super_httplib_debug_logging()

Allow the user to override the default_timeout for all actors by setting an
environment variable
DEFAULT_TIMEOUT = os.getenv('DEFAULT_TIMEOUT', 3600)

[docs]class LogAdapter(logging.LoggerAdapter):

 """Simple Actor Logging Adapter.

 Provides a common logging format for actors that uses the actors
 description and dry parameter as a prefix to the supplied log message.
 """

 def process(self, msg, kwargs):
 return ('[%s%s] %s' % (self.extra['dry'], self.extra['desc'], msg),
 kwargs)

[docs]class BaseActor(object):

 """Abstract base class for Actor objects."""

 # {
 # 'option_name': (type, default, "Long description of the option"),
 # }
 #
 # If `default` is REQUIRED then the option requires user specified input
 #
 # Example:
 # {
 # 'room': (str, REQUIRED, 'Hipchat room to notify'),
 # 'from': (str, 'Kingpin', 'User that sends the message')
 # }
 all_options = {}

 # Default description format
 desc = "{actor}"

 # Set the default timeout for the gen.with_timeout() wrapper that we use to
 # monitor and control the length of execution of a single Actor.
 default_timeout = DEFAULT_TIMEOUT

 # Context separators. These define the left-and-right identifiers of a
 # 'contextual token' in the actor. By default this is { and }, so a
 # contextual token looks like '{KEY}'.
 left_context_separator = '{'
 right_context_separator = '}'

 # Ensure that at __init__ time, if the self._options dict is not completely
 # filled in properly (meaning there are no left-over {KEY}'s), we throw an
 # exception. This will change in the future when we have some concept of a
 # second 'global runtime context object'.
 strict_init_context = True

 def __init__(self, desc=None, options={}, dry=False, warn_on_failure=False,
 condition=True, init_context={}, init_tokens={},
 timeout=None):
 """Initializes the Actor.

 Args:
 desc: (Str) description of the action being executed.
 options: (Dict) Key/Value pairs that have the options
 for this action. Values should be primitives.
 dry: (Bool) or not this Actor will actually make changes.
 warn_on_failure: (Bool) Whether this actor ignores its return
 value and always succeeds (but warns).
 condition: (Bool) Whether to run this actor.
 init_context: (Dict) Key/Value pairs used at instantiation
 time to replace {KEY} strings in the actor definition.
 This is usually driven by the group.Sync/Async actors.
 init_tokens: (Dict) Key/Value pairs passed into the actor that can
 be used for token replacement. Typically this is os.environ() plus
 some custom tokens. Set generally by the misc.Macro actor.
 timeout: (Str/Int/Float) Timeout in seconds for the actor.
 """
 self._type = '%s.%s' % (self.__module__, self.__class__.__name__)
 self._options = options
 self._desc = desc
 self._dry = dry
 self._warn_on_failure = warn_on_failure
 self._condition = condition
 self._init_context = init_context
 self._init_tokens = init_tokens

 self._timeout = timeout
 if timeout is None:
 self._timeout = self.default_timeout

 # strict about this -- but in the future, when we have a
 # runtime_context object, we may loosen this restriction).
 self._fill_in_contexts(context=self._init_context,
 strict=self.strict_init_context)

 self._setup_log()
 self._setup_defaults()
 self._validate_options() # Relies on _setup_log() above

 # Fill in any options with the supplied initialization context. Be
 self.log.debug('Initialized (warn_on_failure=%s, '
 'strict_init_context=%s)' %
 (warn_on_failure, self.strict_init_context))

 def __repr__(self):
 """Returns a nice name/description of the actor.

 Either the user has supplied a custom desc parameter to the actor,
 giving it a useful description for them. On the other hand, if an actor
 defines a custom ActorClass.desc field, that field is interpreted by
 this method an any variables that can be swapped in dynamically are.

 For example, if misc.Sleep.desc is 'Sleeping {sleep}s', this method
 will fill in the value of the option 'sleep' into the string, and then
 use that for the representation of the object.
 """
 if self._desc:
 return self._desc

 return self.__class__.desc.format(actor=self._type, **self._options)

 def _setup_log(self):
 """Create a customized logging object based on the LogAdapter."""
 name = '%s.%s' % (self.__module__, self.__class__.__name__)
 logger = logging.getLogger(name)
 dry_str = 'DRY: ' if self._dry else ''

 self.log = LogAdapter(logger, {'desc': self, 'dry': dry_str})

 def _setup_defaults(self):
 """Populate options with defaults if they aren't set."""

 for option, definition in self.all_options.items():
 if option not in self._options:
 default = definition[1]
 if default is not REQUIRED:
 self._options.update({option: default})

 def _validate_options(self):
 """Validate that all the required options were passed in.

 Args:
 options: A dictionary of options.

 Raises:
 exceptions.InvalidOptions
 """

 # Loop through all_options, and find the required ones
 required = [opt_name
 for (opt_name, definition) in self.all_options.items()
 if definition[1] is REQUIRED]

 self.log.debug('Checking for required options: %s' % required)
 option_errors = []
 option_warnings = []
 for opt in required:
 if opt not in self._options:
 description = self.all_options[opt][2]
 option_errors.append('Option "%s" is required: %s' % (
 opt, description))

 for opt, value in self._options.items():
 if opt not in self.all_options:
 option_warnings.append('Option "%s" is not expected by %s.' % (
 opt, self.__class__.__name__))
 continue

 expected_type = self.all_options[opt][0]

 # Unicode is not a `str` but it is a `basestring`
 # Cast the passed value explicitly as a string
 if isinstance(value, basestring):
 value = str(value)

 # If the expected_type has an attribute 'valid', then verify that
 # the option passed in is one of those valid options.
 if hasattr(expected_type, 'validate'):
 try:
 expected_type.validate(value)
 continue
 except exceptions.InvalidOptions as e:
 option_errors.append(e)

 # If the option type is Bool, try to convert the strings True/False
 # into booleans. If this doesn't work, siletly move on and let the
 # failure get caught below.
 if expected_type is bool:
 try:
 value = self.str2bool(value, strict=True)
 self._options[opt] = value
 except exceptions.InvalidOptions as e:
 self.log.warning(e)

 if not (value is None or isinstance(value, expected_type)):
 message = 'Option "%s" has to be %s and is %s.' % (
 opt, expected_type, type(value))
 option_errors.append(message)

 for w in option_warnings:
 self.log.warning(w)

 if option_errors:
 for e in option_errors:
 self.log.critical(e)
 raise exceptions.InvalidOptions(
 'Found %s issue(s) with passed options.' % len(option_errors))

[docs] def option(self, name):
 """Return the value for a given Actor option."""

 return self._options.get(name)

[docs] def readfile(self, path):
 """Return file contents as a string.

 Raises:
 InvalidOptions if file is not found, or readable.
 """

 try:
 with open(path) as f:
 contents = f.read()
 except IOError as e:
 raise exceptions.InvalidOptions(e)

 return contents

 @gen.coroutine
[docs] def timeout(self, f, *args, **kwargs):
 """Wraps a Coroutine method in a timeout.

 Used to wrap the self.execute() method in a timeout that will raise an
 ActorTimedOut exception if an actor takes too long to execute.

 *Note, Tornado 4+ does not allow you to actually kill a task on the
 IOLoop.* This means that all we are doing here is notifying the caller
 (through the raised exception) that a problem has happened.

 Fairly simple Actors should actually 'stop executing' when this
 exception is raised. Complex actors with very unique behaviors though
 (like the rightsacle.server_array.Execute actor) have the ability to
 continue to execute in the background until the Kingpin application
 quits. It is not the job of this method to try to kill these actors,
 but just to let the user know that a failure has happened.
 """

 # Get our timeout setting, or fallback to the default
 self.log.debug('%s.%s() deadline: %s(s)' %
 (self._type, f.__name__, self._timeout))

 # Get our Future object but don't yield on it yet, This starts the
 # execution, but allows us to wrap it below with the
 # 'gen.with_timeout' function.
 fut = f(*args, **kwargs)

 # If no timeout is set (none, or 0), then we just yield the Future and
 # return its results.
 if not self._timeout:
 ret = yield fut
 raise gen.Return(ret)

 # Generate a timestamp in the future at which point we will raise
 # an alarm if the actor is still executing
 deadline = time.time() + float(self._timeout)

 # Now we yield on the gen_with_timeout function
 try:
 ret = yield gen.with_timeout(
 deadline, fut, quiet_exceptions=(exceptions.ActorTimedOut))
 except gen.TimeoutError:
 msg = ('%s.%s() execution exceeded deadline: %ss' %
 (self._type, f.__name__, self._timeout))
 self.log.error(msg)
 raise exceptions.ActorTimedOut(msg)

 raise gen.Return(ret)

[docs] def str2bool(self, v, strict=False):
 """Returns a Boolean from a variety of inputs.

 args:
 value: String/Bool
 strict: Whether or not to _only_ convert the known words into
 booleans, or whether to allow "any" word to be considered True
 other than the known False words.

 returns:
 A boolean
 """
 false = ('no', 'false', 'f', '0')
 true = ('yes', 'true', 't', '1')

 string = str(v).lower()

 if strict:
 if string not in true and string not in false:
 raise exceptions.InvalidOptions(
 'Expected [%s, %s] but got: %s' %
 (true, false, string))

 return string not in false

 def _check_condition(self):
 """Check if specified condition allows this actor to run.

 Evaluate self._condition to figure out if this actor should run.
 The only exception to simply casting this variable to bool is if
 the value of self._condition is a string "False" or string "0".
 """

 check = self.str2bool(self._condition)
 self.log.debug('Condition %s evaluates to %s' % (
 self._condition, check))
 return check

 def _fill_in_contexts(self, context={}, strict=True):
 """Parses self._options and updates it with the supplied context.

 Parses the objects self._options dict (by converting it into a JSON
 string, substituting, and then turning it back into a dict) and the
 self._desc string and replaces any {KEY}s with the valoues from the
 context dict that was supplied.

 Args:
 strict: bool whether or not to allow missing context keys to be
 skipped over.

 Raises:
 exceptions.InvalidOptions
 """
 # Inject contexts into Description
 try:
 self._desc = utils.populate_with_tokens(
 str(self),
 context,
 self.left_context_separator,
 self.right_context_separator,
 strict=strict)
 except LookupError as e:
 msg = 'Context for description failed: %s' % e
 raise exceptions.InvalidOptions(msg)

 # Inject contexts into condition
 try:
 self._condition = utils.populate_with_tokens(
 str(self._condition),
 context,
 self.left_context_separator,
 self.right_context_separator,
 strict=strict)
 except LookupError as e:
 msg = 'Context for condition failed: %s' % e
 raise exceptions.InvalidOptions(msg)

 # Convert our self._options dict into a string for fast parsing
 options_string = json.dumps(self._options)

 # Generate a new string with the values parsed out. At this point, if
 # any value is un-matched, an exception is raised and execution fails.
 # This stops execution during a dry run, before any live changes are
 # made.
 try:
 new_options_string = utils.populate_with_tokens(
 options_string,
 context,
 self.left_context_separator,
 self.right_context_separator,
 strict=strict)
 except LookupError as e:
 msg = 'Context for options failed: %s' % e
 raise exceptions.InvalidOptions(msg)

 # Finally, convert the string back into a dict and store it.
 self._options = json.loads(new_options_string)

 @gen.coroutine
 @timer
 def execute(self):
 """Executes an actor and yields the results when its finished.

 Calls an actors private _execute() method and either returns the result
 (through gen.Return) or handles any exceptions that are raised.

 RecoverableActorFailure exceptions are potentially swallowed up (and
 warned) if the self._warn_on_failure flag is set. Otherwise, they're
 logged and re-raised. All other ActorException exceptions are caught,
 logged and re-raised.

 We have a generic catch-all exception handling block as well, because
 third party Actor classes may or may not catch all appropriate
 exceptions. This block is mainly here to prevent the entire app from
 failing due to a poorly written Actor.

 Raises:
 gen.Return(result)
 """
 self.log.debug('Beginning')

 # Any exception thats raised by an actors _execute() method will
 # automatically cause actor failure and we return right away.
 result = None

 if not self._check_condition():
 self.log.warning('Skipping execution. Condition: %s' %
 self._condition)
 raise gen.Return()

 try:
 result = yield self.timeout(self._execute)
 except exceptions.ActorException as e:
 # If exception is not RecoverableActorFailure
 # or if warn_on_failure is not set, then escalate.
 recover = isinstance(e, exceptions.RecoverableActorFailure)
 if not recover or not self._warn_on_failure:
 self.log.critical(e)
 raise

 # Otherwise - flag this failure as a warning, and continue
 self.log.warning(e)
 self.log.warning(
 'Continuing execution even though a failure was '
 'detected (warn_on_failure=%s)' % self._warn_on_failure)
 except Exception as e:
 # We don't like general exception catch clauses like this, but
 # because actors can be written by third parties and automatically
 # imported, its impossible for us to catch every exception
 # possible. This is a failsafe thats meant to throw a strong
 # warning.
 log.critical('Unexpected exception caught! '
 'Please contact the author (%s) and provide them '
 'with this stacktrace' %
 sys.modules[self.__module__].__author__)
 self.log.exception(e)
 raise exceptions.ActorException(e)
 else:
 self.log.debug('Finished successfully, return value: %s' % result)

 # If we got here, we're exiting the actor cleanly and moving on.
 raise gen.Return(result)

[docs]class HTTPBaseActor(BaseActor):

 """Abstract base class for an HTTP-client based Actor object.

 This class provides common methods for getting access to asynchronous
 HTTP clients, wrapping the executions in appropriate try/except blocks,
 timeouts, etc.

 If you're writing an Actor that uses a remote REST API, this is the
 base class you should subclass from.
 """

 headers = None

 def _get_http_client(self):
 """Returns an asynchronous web client object

 The object is actually of type SimpleAsyncHTTPClient
 """
 return httpclient.AsyncHTTPClient()

 def _get_method(self, post):
 """Returns the appropriate HTTP Method based on the supplied Post data.

 Args:
 post: The post body you intend to submit in the URL request

 Returns:
 'GET' or 'POST'
 """
 # If there is no post data, set the request method to GET
 if post is not None:
 return 'POST'
 else:
 return 'GET'

 def _generate_escaped_url(self, url, args):
 """Takes in a dictionary of arguments and returns a URL line.

 Sorts the arguments so that the returned string is predictable and in
 alphabetical order. Effectively wraps the tornado.httputil.url_concat
 method and properly strips out None values, as well as lowercases
 Bool values.

 Args:
 url: (Str) The URL to append the arguments to
 args: (Dict) Key/Value arguments. Values should be primitives.

 Returns:
 A URL encoded string like this: <url>?foo=bar&abc=xyz
 """

 # Remove keys from the arguments where the value is None
 args = dict((k, v) for k, v in args.iteritems() if v)

 # Convert all Bool values to lowercase strings
 for key, value in args.iteritems():
 if type(value) is bool:
 args[key] = str(value).lower()

 # Now generate the URL
 full_url = httputil.url_concat(url, sorted(args.items()))
 self.log.debug('Generated URL: %s' % full_url)

 return full_url

 # TODO: Add a retry/backoff timer here. If the remote endpoint returns
 # garbled data (ie, maybe a 500 errror or something else thats not in
 # JSON format, we should back off and try again.
 @gen.coroutine
 def _fetch(self, url, post=None, auth_username=None, auth_password=None):
 """Executes a web request asynchronously and yields the body.

 Args:
 url: (Str) The full url path of the API call
 post: (Str) POST body data to submit (if any)
 auth_username: (str) HTTP auth username
 auth_password: (str) HTTP auth password
 """

 # Generate the full request URL and log out what we're doing...
 self.log.debug('Making HTTP request to %s with data: %s' % (url, post))

 # Create the http_request object
 http_client = self._get_http_client()
 http_request = httpclient.HTTPRequest(
 url=url,
 method=self._get_method(post),
 body=post,
 headers=self.headers,
 auth_username=auth_username,
 auth_password=auth_password,
 follow_redirects=True,
 max_redirects=10)

 # Execute the request and raise any exception. Exceptions are not
 # caught here because they are unique to the API endpoints, and thus
 # should be handled by the individual Actor that called this method.
 http_response = yield http_client.fetch(http_request)

 try:
 body = json.loads(http_response.body)
 except ValueError as e:
 raise exceptions.UnparseableResponseFromEndpoint(
 'Unable to parse response from remote API as JSON: %s' % e)

 # Receive a successful return
 raise gen.Return(body)

 © Copyright 2015, Nextdoor.
 Created using Sphinx 1.4.

_modules/kingpin/actors/misc.html

 Navigation

 		
 index

 		
 modules |

 		Kingpin 0.4.0 documentation »

 		Module code »

 Source code for kingpin.actors.misc

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#
Copyright 2014 Nextdoor.com, Inc

"""
:mod:`kingpin.actors.misc`
^^^^^^^^^^^^^^^^^^^^^^^^^^

These are common utility Actors that don't really need their own
dedicated packages. Things like sleep timers, loggers, etc.

Optional Environment Variables

:URLLIB_DEBUG:
 Set this variable to enable extreme debug logging of the URLLIB requests made
 by the RightScale/AWS actors. *Note, this is very insecure as
 headers/cookies/etc. are exposed*
"""

import StringIO
import json
import logging
import urllib

from tornado import gen
from tornado import httpclient
from kingpin.actors import utils as actor_utils
from kingpin.actors import group
from kingpin import exceptions as kingpin_exceptions

from kingpin import schema
from kingpin import utils
from kingpin.actors import base
from kingpin.actors import exceptions
from kingpin.constants import REQUIRED

log = logging.getLogger(__name__)

__author__ = ('Matt Wise <matt@nextdoor.com>, '
 'Mikhail Simin <mikhail@nextdoor.com>')

[docs]class Macro(base.BaseActor):

 """Parses a kingpin script, instantiates and executes it.

 Parse JSON/YAML

 Kingpin JSON/YAML has 2 passes at its validity. Script syntax must be
 valid, with the exception of a few useful deviations allowed by `demjson
 <http://deron.meranda.us/python/demjson/>`_ parser. Main
 one being the permission of inline comments via ``/* this */`` syntax.

 The second pass is validating the Schema. The script will be validated
 for schema-conformity as one of the first things that happens at load-time
 when the app starts up. If it fails, you will be notified immediately.

 Lastly after the JSON/YAML is established to be valid, all the tokens are
 replaced with their specified value. Any key/value pair passed in the
 ``tokens`` option will be available inside of the JSON file as ``%KEY%``
 and replaced with the value at this time.

 In a situation where nested Macro executions are invoked the tokens *do
 not* propagate from outter macro into the inner. This allows to reuse token
 names, but forces the user to specify every token needed. Similarly, if
 environment variables are used for token replacement in the main file,
 these tokens are not available in the subsequent macros.

 Pre-Instantiation

 In an effort to prevent mid-run errors, we pre-instantiate all Actor
 objects all at once before we ever begin executing code. This ensures that
 major typos or misconfigurations in the JSON/YAML will be caught early on.

 Execution

 `misc.Macro` actor simply calls the `execute()` method of the most-outter
 actor; be it a single action, or a group actor.

 Options

 :macro:
 String of local path to a JSON/YAML script.

 :tokens:
 Dictionary to search/replace within the file.

 Examples

 .. code-block:: json

 { "desc": "Stage 1",
 "actor": "misc.Macro",
 "options": {
 "macro": "deployment/stage-1.json",
 "tokens": {
 "TIMEOUT": 360,
 "RELEASE": "%RELEASE%"
 }
 }
 }

 Dry Mode

 Fully supported -- instantiates the actor inside of JSON with dry=True. The
 behavior of the consecutive actor is unique to each; read their description
 for more information on dry mode.
 """

 # By default, group actors have no timeout. We rely on the individual
 # actors to expire on their own. This is, of course, overrideable in the
 # JSON.
 default_timeout = None

 all_options = {
 'macro': (str, REQUIRED,
 "Path to a Kingpin script. http(s)://, file:///, "
 "absolute or relative file paths."),
 'tokens': (dict, {}, "Tokens passed into the JSON file.")
 }

 desc = "Macro: {macro}"

 def __init__(self, *args, **kwargs):
 """Pre-parse the script file and compile actors.

 Note, we override the default init_tokens={} from the base class and
 default it to a _copy_ of the os.environ dict.
 """
 super(Macro, self).__init__(*args, **kwargs)

 # Temporary check that macro is a local file.
 self._check_macro()

 self.log.info('Preparing actors from %s' % self.option('macro'))

 # Take the "init tokens" that were supplied to this actor by its parent
 # and merge them with the explicitly defined tokens in the actor
 # definition itself. Give priority to the explicitly defined tokens on
 # any conflicts.
 self._init_tokens.update(self.option('tokens'))

 # Copy the tmp file / download a remote macro
 macro_file = self._get_macro()

 # Parse script, and insert tokens.
 config = self._get_config_from_script(macro_file)

 # Check schema for compatibility
 self._check_schema(config)

 # Instantiate the first actor, but don't execute it.
 # Any errors raised by this actor should be attributed to it, and not
 # this Macro actor. No try/catch here
 if type(config) == list:
 # List is a Sync group actor
 self.initial_actor = group.Sync(options={'acts': config},
 dry=self._dry)
 else:
 # After the schema has been checked, pass in whatever tokens _we_
 # got, off to the soon-to-be-created actor.
 config['init_tokens'] = self._init_tokens.copy()

 self.initial_actor = actor_utils.get_actor(config, dry=self._dry)

 def _check_macro(self):
 """For now we are limiting the functionality."""

 prohibited = ('ftp://',)
 if self.option('macro').startswith(prohibited):
 raise exceptions.UnrecoverableActorFailure(
 'Macro actor is cannot handle ftp fetching yet..')

 def _get_macro(self):
 """Return a buffer to the macro file.

 Will download a remote file in-memory and return a buffer, or
 open the local file and return a buffer to that file.
 """

 remote = ('http://', 'https://')
 if self.option('macro').startswith(remote):
 client = httpclient.HTTPClient()
 try:
 R = client.fetch(self.option('macro'))
 except Exception as e:
 raise exceptions.UnrecoverableActorFailure(e)
 finally:
 client.close()
 buf = StringIO.StringIO()
 # Set buffer representation for debug printing.
 buf.__repr__ = lambda: (
 'In-memory file from: %s' % self.option('macro'))
 buf.write(R.body)
 buf.seek(0)
 client.close()
 return buf

 try:
 instance = open(self.option('macro'))
 except IOError as e:
 raise exceptions.UnrecoverableActorFailure(e)
 return instance

 def _get_config_from_script(self, script_file):
 """Convert a script into a dict() with inserted ENV vars.

 Run the JSON dictionary through our environment parser and return
 back a dictionary with all of the %XX% keys swapped out with
 environment variables.

 Args:
 script_file: A path string to a file, or an open() file stream.

 Returns:
 Dictionary adhering to our schema.

 Raises:
 UnrecoverableActorFailure -
 if parsing script or inserting env vars fails.
 """
 self.log.debug('Parsing %s' % script_file)
 try:
 return utils.convert_script_to_dict(
 script_file=script_file,
 tokens=self._init_tokens)
 except (kingpin_exceptions.InvalidScript, LookupError) as e:
 raise exceptions.UnrecoverableActorFailure(e)

 def _check_schema(self, config):
 # Run the dict through our schema validator quickly
 self.log.debug('Validating schema for %s' % self.option('macro'))
 try:
 schema.validate(config)
 except kingpin_exceptions.InvalidScript as e:
 self.log.critical('Invalid Schema.')
 raise exceptions.UnrecoverableActorFailure(e)

 @gen.coroutine
 def _execute(self):
 # initial_actor is configured with same dry parameter as this actor.
 # Just execute it and the rest will be handled internally.
 yield self.initial_actor.execute()

[docs]class Sleep(base.BaseActor):

 """Sleeps for an arbitrary number of seconds.

 Options

 :sleep:
 Integer of seconds to sleep.

 Examples

 .. code-block:: json

 { "actor": "misc.Sleep",
 "desc": "Sleep for 60 seconds",
 "options": {
 "sleep": 60
 }
 }

 Dry Mode

 Fully supported -- does not actually sleep, just pretends to.
 """

 all_options = {
 'sleep': ((int, float, str), REQUIRED,
 'Number of seconds to do nothing.')
 }

 desc = "Sleep {sleep}s"

 @gen.coroutine
 def _execute(self):
 """Executes an actor and yields the results when its finished."""

 self.log.debug('Sleeping for %s seconds' % self.option('sleep'))

 sleep = self.option('sleep')

 if isinstance(sleep, basestring):
 sleep = float(sleep)

 if not self._dry:
 yield utils.tornado_sleep(seconds=sleep)

[docs]class GenericHTTP(base.HTTPBaseActor):

 """A very simple actor that allows GET/POST methods over HTTP.

 Does a GET or a POST to a specified URL.

 Options

 :url:
 Destination URL

 :data:
 Optional POST data as a `dict`. Will convert into key=value&key2=value2..
 Exclusive of `data-json` option.

 :data-json:
 Optional POST data as a `dict`. Will stringify and pass as JSON.
 Exclusive of `data` option.

 :username:
 Optional for HTTPAuth.

 :password:
 Optional for HTTPAuth.

 Examples

 .. code-block:: json

 { "actor": "misc.GenericHTTP",
 "desc": "Make a simple web call",
 "options": {
 "url": "http://example.com/rest/api/v1?id=123&action=doit",
 "username": "secret",
 "password": "%SECRET_PASSWORD%"
 }
 }

 Dry Mode

 Will not do anything in dry mode except print a log statement.
 """

 all_options = {
 'url': (str, REQUIRED, 'Domain name + query string to fetch'),
 'data': (dict, {}, 'Data to attach as a POST query'),
 'data-json': (dict, {}, 'JSON data to attach as POST query'),
 'username': (str, '', 'HTTPAuth username'),
 'password': (str, '', 'HTTPAuth password')
 }

 @gen.coroutine
 def _execute_dry(self):
 is_post = bool(self.option('data'))
 method = ['GET', 'POST'][is_post]

 self.log.info("Would do a %s request to %s"
 % (method, self.option('url')))
 raise gen.Return()

 @gen.coroutine
 def _execute(self):

 if self._dry:
 raise gen.Return(self._execute_dry())

 # Only generate a JSON text string if a populated dict was passed to
 # data-json.
 datajson = None
 if self.option('data-json'):
 datajson = json.dumps(self.option('data-json'))

 escaped_post = (
 urllib.urlencode(self.option('data')) or
 datajson or None)

 try:
 yield self._fetch(self.option('url'),
 post=escaped_post,
 auth_username=self.option('username'),
 auth_password=self.option('password'))
 except httpclient.HTTPError as e:
 if e.code == 401:
 raise exceptions.InvalidCredentials(e.message)

 © Copyright 2015, Nextdoor.
 Created using Sphinx 1.4.

_modules/kingpin/actors/librato.html

 Navigation

 		
 index

 		
 modules |

 		Kingpin 0.4.0 documentation »

 		Module code »

 Source code for kingpin.actors.librato

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#
Copyright 2014 Nextdoor.com, Inc

"""
:mod:`kingpin.actors.librato`
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The Librato Actor allows you to post an Annotation to Librato. This is
specifically useful for marking when deployments occur on your graphs for
cause/effect analysis.

Required Environment Variables

:LIBRATO_TOKEN:
 Librato API Token

:LIBRATO_EMAIL:
 Librato email account (i.e. username)

"""

import logging
import os
import urllib

from tornado import gen
from tornado import httpclient

from kingpin import utils
from kingpin.actors import base
from kingpin.actors import exceptions
from kingpin.constants import REQUIRED

log = logging.getLogger(__name__)

__author__ = 'Charles McLaughlin <charles@nextdoor.com>'

API_CONTENT_TYPE = 'application/x-www-form-urlencoded'
API_URL = 'https://metrics-api.librato.com/v1/'
ANNOTATIONS_URL = API_URL + 'annotations/'
METRICS_URL = API_URL + 'metrics' # Used to test auth

TOKEN = os.getenv('LIBRATO_TOKEN', None)
EMAIL = os.getenv('LIBRATO_EMAIL', None)

[docs]class Annotation(base.HTTPBaseActor):

 """Librato Annotation Actor

 Posts an Annotation to Librato.

 Options

 :title:
 The title of the annotation

 :description:
 The description of the annotation

 :name:
 Name of the metric to annotate

 Examples

 .. code-block:: json

 { "actor": "librato.Annotation",
 "desc": "Mark our deployment",
 "options": {
 "title": "Deploy",
 "description": "Version: 0001a",
 "name": "production_releases"
 }
 }

 Dry Mode

 Currently does not actually do anything, just logs dry mode.
 """

 all_options = {
 'title': (str, REQUIRED, "Annotation title"),
 'description': (str, REQUIRED, "Annotation description"),
 'name': (str, REQUIRED, "Name of the metric to annotate")
 }

 desc = "Sending Annotation to {name}"

 def __init__(self, *args, **kwargs):
 """Check for the needed environment variables."""
 super(Annotation, self).__init__(*args, **kwargs)

 if not TOKEN:
 raise exceptions.InvalidCredentials(
 'Missing the "LIBRATO_TOKEN" environment variable.')

 if not EMAIL:
 raise exceptions.InvalidCredentials(
 'Missing the "LIBRATO_EMAIL" environment variable.')

 @gen.coroutine
 @utils.retry(excs=(httpclient.HTTPError), retries=3)
 def _fetch_wrapper(self, *args, **kwargs):
 """Wrap the superclass _fetch method to catch known Librato errors."""
 try:
 res = yield self._fetch(*args, **kwargs)
 except httpclient.HTTPError as e:
 if e.code == 400:
 # "HTTPError: HTTP 400: Bad Request"
 raise exceptions.BadRequest(
 'Check your JSON inputs.')
 if e.code == 401:
 # "The authentication you provided is invalid."
 raise exceptions.InvalidCredentials(
 'Librato authentication failed.')
 raise

 raise gen.Return(res)

 @gen.coroutine
 def _execute(self):
 """Executes an actor and yields the results when its finished.

 raises: gen.Return()
 """

 if self._dry:
 self.log.info('Testing Librato auth, skipping annotation')
 msg = ("Would have annotated metric "
 "'%s' with title:'%s', description:'%s'")
 self.log.info(msg % (self.option('name'), self.option('title'),
 self.option('description')))
 yield self._fetch_wrapper(
 METRICS_URL, auth_username=EMAIL, auth_password=TOKEN)
 else:
 self.log.info(
 "Annotating metric '%s' with title:'%s', description:'%s'" % (
 self.option('name'), self.option('title'),
 self.option('description')))
 url = ANNOTATIONS_URL + self.option('name')
 args = urllib.urlencode(
 {'title': self.option('title'),
 'description': self.option('description')})

 yield self._fetch_wrapper(url, post=args,
 auth_username=EMAIL, auth_password=TOKEN)
 raise gen.Return()

 © Copyright 2015, Nextdoor.
 Created using Sphinx 1.4.

_modules/kingpin/actors/exceptions.html

 Navigation

 		
 index

 		
 modules |

 		Kingpin 0.4.0 documentation »

 		Module code »

 Source code for kingpin.actors.exceptions

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#
Copyright 2014 Nextdoor.com, Inc
"""
:mod:`kingpin.actors.exceptions`
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

All common Actor exceptions
"""

from kingpin import exceptions

[docs]class ActorException(exceptions.KingpinException):

 """Base Kingpin Actor Exception"""

[docs]class RecoverableActorFailure(ActorException):

 """Base exception that allows script executions to continue on failure.

 This exception class is used to throw an error when an Actor fails, but
 it was an expected and/or acceptable failure.

 This should be used for exceptions that are somewhat normal ... for
 example, trying to delete a ServerArray thats already gone.
 """

[docs]class UnrecoverableActorFailure(ActorException):

 """Base exception for unrecoverable failures.

 This exception class should be used for critical failures that should
 always stop a set of Kingpin actors in-place, regardless of the actors
 `warn_on_failure` setting.

 Examples would be when credentials are incorrect, or an unexpected
 exception is caught and there is no known recovery point.
 """

[docs]class ActorTimedOut(RecoverableActorFailure):

 """Raised when an Actor takes too long to execute"""

[docs]class InvalidActor(UnrecoverableActorFailure):

 """Raised when an invalid Actor name was supplied"""

[docs]class InvalidOptions(UnrecoverableActorFailure):

 """Invalid option arguments passed into the Actor object.

 This can be used both for the actual options dict passed into the actor,
 as well as if a the wrong options were used when connecting to a remote
 API.
 """

[docs]class InvalidCredentials(UnrecoverableActorFailure):

 """Invalid or missing credentials required for Actor object."""

[docs]class UnparseableResponseFromEndpoint(UnrecoverableActorFailure):

 """Invalid response returned from a remote REST endpoint."""

[docs]class BadRequest(RecoverableActorFailure):

 """An action failed due to a HTTP 400 error likely due to bad input. """

 © Copyright 2015, Nextdoor.
 Created using Sphinx 1.4.

_modules/kingpin/actors/hipchat.html

 Navigation

 		
 index

 		
 modules |

 		Kingpin 0.4.0 documentation »

 		Module code »

 Source code for kingpin.actors.hipchat

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#
Copyright 2014 Nextdoor.com, Inc

"""
:mod:`kingpin.actors.hipchat`
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The Hipchat Actors allow you to send messages to a HipChat room at stages
during your job execution. The actor supports dry mode by validating that the
configured API Token has access to execute the methods, without actually
sending the messages.

Required Environment Variables

:HIPCHAT_TOKEN:
 HipChat API Token

:HIPCHAT_NAME:
 HipChat message from name
 (defaults to ``Kingpin``)
"""

import logging
import os

from tornado import gen
from tornado import httpclient

from kingpin import utils
from kingpin.actors import base
from kingpin.actors import exceptions
from kingpin.constants import REQUIRED

log = logging.getLogger(__name__)

__author__ = 'Matt Wise <matt@nextdoor.com>'

API_CONTENT_TYPE = 'application/json'
API_URL = 'https://api.hipchat.com/v1'
API_MESSAGE_PATH = '%s/rooms/message' % API_URL
API_TOPIC_PATH = '%s/rooms/topic' % API_URL

TOKEN = os.getenv('HIPCHAT_TOKEN', None)
NAME = os.getenv('HIPCHAT_NAME', 'Kingpin')

[docs]class HipchatBase(base.HTTPBaseActor):

 """Simple Hipchat Abstract Base Object"""

 def __init__(self, *args, **kwargs):
 """Check required environment variables."""
 super(HipchatBase, self).__init__(*args, **kwargs)

 if not TOKEN:
 raise exceptions.InvalidCredentials(
 'Missing the "HIPCHAT_TOKEN" environment variable.')

 self._token = TOKEN
 self._name = self._validate_from_name(NAME)

 def _validate_from_name(self, name):
 """Parses and validates the FROM name.

 The username must be between 1 and 15 characters. If its not,
 we return a partial name to ensure that the push still works.

 Args:
 name: (Str) Proposed Hipchat message 'from' name

 Returns:
 A potentially modified string name thats valid.
 """
 return name[:15]

 def _build_potential_args(self, potential_args):
 """Builds a full set of arguments to pass to Hipchat.

 Appends the authentication token and a few other bits to the
 arguments supplied.

 Args:
 potential_Args: A hash of potential arguments.

 Returns:
 A larger hash of arguments.
 """
 potential_args['auth_token'] = self._token
 potential_args['from'] = self._name

 # If we're in 'dry run' mode, add the auth_test parameter
 if self._dry:
 potential_args['auth_test'] = True

 return potential_args

 @gen.coroutine
 @utils.retry(excs=exceptions.RecoverableActorFailure, retries=3)
 def _fetch_wrapper(self, *args, **kwargs):
 """Wrap the superclass _fetch method to catch known Hipchat errors."""
 try:
 res = yield self._fetch(*args, **kwargs)
 except httpclient.HTTPError as e:
 # These are HTTPErrors that we know about, and can log specific
 # error messages for.

 self.log.critical(e)
 if e.code in (401, 403):
 # "The authentication you provided is invalid."
 raise exceptions.InvalidCredentials(
 'The "HIPCHAT_NAME" or "HIPCHAT_TOKEN" supplied is '
 'invalid. %s' % e)
 else:
 # We ran into a problem we can't handle. Also, keep in mind
 # that @utils.retry() was used, so this error happened several
 # times before getting here. Raise it.
 raise exceptions.RecoverableActorFailure(
 'Unexpected error from Hipchat API: %s' % e)

 raise gen.Return(res)

[docs]class Message(HipchatBase):

 """Sends a message to a room in HipChat.

 Options

 :room:
 (str) The string-name (or ID) of the room to send a message to

 :message:
 (str) Message to send

 Examples

 .. code-block:: json

 { "actor": "hipchat.Message",
 "desc": "Send a message!",
 "options": {
 "room": "Operations",
 "message": "Beginning Deploy: v1.2"
 }
 }

 Dry Mode

 Fully supported -- does not actually send messages to a room, but validates
 that the API credentials would have access to send the message using the
 HipChat ``auth_test`` optional API argument.
 """

 all_options = {
 'room': (str, REQUIRED, 'Hipchat room name'),
 'message': (str, REQUIRED, 'Message to send')
 }

 desc = "Sending Message to {room}"

 @gen.coroutine
 def _post_message(self, room_id, message,
 message_format='html', notify=0,
 color='yellow'):
 """Posts a message to Hipchat.

 https://www.hipchat.com/docs/api/method/rooms/message

 Args:
 room_id: (Str/Int) Name or ID of the room to post to.
 message: (Str) Required. The message body. 10,000 characters max.
 message_format: (Str) 'html' or 'text'.
 notify: (0/1) Whether or not this message should trigger a
 notification for people in the room.
 color: (Str): Background color for message. One of "yellow", "red",
 "green", "purple", "gray", or "random".

 Raises:
 gen.Return(<Dictionary of the response from Hipchat>)
 """
 args = self._build_potential_args({
 'room_id': room_id,
 'message': message,
 'message_format': message_format,
 'notify': notify,
 'color': color,
 'format': 'json',
 })
 url = self._generate_escaped_url(API_MESSAGE_PATH, args)
 res = yield self._fetch_wrapper(url)
 raise gen.Return(res)

 @gen.coroutine
 def _execute(self):
 """Executes an actor and yields the results when its finished.

 raises: gen.Return()
 """
 self.log.info('Sending message "%s" to Hipchat room "%s"' %
 (self.option('message'), self.option('room')))
 res = yield self._post_message(self.option('room'),
 self.option('message'))

 # If we get 'None' or 'False' back, the actor failed.
 if not res:
 raise exceptions.RecoverableActorFailure(
 'Failed to send message to HipChat: %s' % res)

 # If we got here, the result is supposed to include 'success' as a key
 # and inside that key we can dig for the actual message. If the
 # response code is 202, we know that we didn't actually execute the
 # message send, but just validated the API token against the API.
 if 'success' in res:
 if res['success']['code'] == 202:
 self.log.info('API Token Validated: %s' %
 res['success']['message'])

 raise gen.Return()

[docs]class Topic(HipchatBase):

 """Sets a HipChat room topic.

 Options

 - ``room`` - The string-name (or ID) of the room to set the topic of
 - ``topic`` - String of the topic to send

 Examples

 .. code-block:: json

 { "actor": "hipchat.Topic",
 "desc": "set the room topic",
 "options": {
 "room": "Operations",
 "topic": "Latest Deployment: v1.2"
 }
 }

 Dry Mode

 Fully supported -- does not actually set a room topic, but validates
 that the API credentials would have access to set the topic of the room
 requested.
 """

 all_options = {
 'room': (str, REQUIRED, 'Hipchat room name'),
 'topic': (str, REQUIRED, 'Topic to set')
 }

 desc = "Setting Room {room} topic"

 @gen.coroutine
 def _set_topic(self, room_id, topic):
 """Posts a message to Hipchat.

 https://www.hipchat.com/docs/api/method/rooms/topic

 Args:
 room_id: (Str/Int) Name or ID of the room to post to.
 topic: (Str) Required. The topic string, 250 char max

 Raises:
 gen.Return(<Dictionary of the response from Hipchat>)
 """
 args = self._build_potential_args({
 'room_id': room_id,
 'topic': topic,
 'format': 'json',
 })
 url = self._generate_escaped_url(API_TOPIC_PATH, args)

 # Note, we set post='' here to make sure we send a POST message, even
 # though were passing all of our arguments on the actual request line.
 res = yield self._fetch_wrapper(url, post='')
 raise gen.Return(res)

 @gen.coroutine
 def _execute(self):
 """Executes an actor and yields the results when its finished.

 raises: gen.Return()
 """
 self.log.info('Setting room "%s" topic to: %s' %
 (self.option('room'), self.option('topic')))
 res = yield self._set_topic(self.option('room'),
 self.option('topic'))

 # If we get 'None' or 'False' back, the actor failed.
 if not res:
 raise exceptions.RecoverableActorFailure(
 'Failed to set room topic: %s' % res)

 # If we got here, the result is supposed to include 'success' as a key
 # and inside that key we can dig for the actual message. If the
 # response code is 202, we know that we didn't actually execute the
 # message send, but just validated the API token against the API.
 if 'success' in res:
 if res['success']['code'] == 202:
 self.log.info('API Token Validated: %s' %
 res['success']['message'])

 raise gen.Return()

 © Copyright 2015, Nextdoor.
 Created using Sphinx 1.4.

_modules/kingpin/actors/rollbar.html

 Navigation

 		
 index

 		
 modules |

 		Kingpin 0.4.0 documentation »

 		Module code »

 Source code for kingpin.actors.rollbar

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#
Copyright 2014 Nextdoor.com, Inc

"""
:mod:`kingpin.actors.rollbar`
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The Rollbar Actor allows you to post Deploy messages to Rollbar when you
execute a code deployment.

Required Environment Variables

:ROLLBAR_TOKEN:
 Rollbar API Token
"""

import logging
import os
import urllib

from tornado import gen
from tornado import httpclient

from kingpin import utils
from kingpin.actors import base
from kingpin.actors import exceptions
from kingpin.constants import REQUIRED

log = logging.getLogger(__name__)

__author__ = 'Matt Wise <matt@nextdoor.com>'

API_CONTENT_TYPE = 'application/json'
API_URL = 'https://api.rollbar.com/api/1'
API_DEPLOY_PATH = '%s/deploy/' % API_URL
API_PROJECT_PATH = '%s/project/' % API_URL

TOKEN = os.getenv('ROLLBAR_TOKEN', None)

[docs]class RollbarBase(base.HTTPBaseActor):

 """Simple Rollbar Base Abstract Actor"""

 def __init__(self, *args, **kwargs):
 """Check required environment variables."""
 super(RollbarBase, self).__init__(*args, **kwargs)

 if not TOKEN:
 raise exceptions.InvalidCredentials(
 'Missing the "ROLLBAR_TOKEN" environment variable.')

 self._token = TOKEN

 def _build_potential_args(self, potential_args):
 """Builds a full set of arguments to pass to Rollbar.

 Appends the authentication token and a few other bits to the
 arguments supplied.

 Args:
 potential_Args: A hash of potential arguments.

 Returns:
 A larger hash of arguments.
 """
 potential_args['access_token'] = self._token
 return potential_args

 @gen.coroutine
 @utils.retry(excs=(httpclient.HTTPError), retries=3)
 def _fetch_wrapper(self, *args, **kwargs):
 """Wrap the superclass _fetch method to catch known Rollbar errors.

 https://rollbar.com/docs/api_overview/
 """
 try:
 res = yield self._fetch(*args, **kwargs)
 except httpclient.HTTPError as e:
 # These are HTTPErrors that we know about, and can log specific
 # error messages for.

 if e.code in (401, 403):
 raise exceptions.InvalidCredentials(
 'The "ROLLBAR_TOKEN" is invalid')
 elif e.code == 422:
 raise exceptions.RecoverableActorFailure(
 'Unprocessable Entity - the request was parseable (i.e. '
 'valid JSON), but some parameters were missing or '
 'otherwise invalid.')
 elif e.code == 429:
 raise exceptions.RecoverableActorFailure(
 'Too Many Requests - If rate limiting is enabled for '
 'your access token, this return code signifies that the '
 'rate limit has been reached and the item was not '
 'processed.')
 else:
 # We ran into a problem we can't handle. Also, keep in mind
 # that @utils.retry() was used, so this error happened several
 # times before getting here. Raise it.
 raise exceptions.RecoverableActorFailure(
 'Unexpected error from Rollbar API: %s' % e)

 raise gen.Return(res)

 @gen.coroutine
 def _project(self):
 """Get a project description back from Rollbar.

 This method is used as a simple test that the API keys work. It access
 the list of projects from Rollbar and raises the appropriate exceptions
 if it cannot.

 https://rollbar.com/docs/api/projects/#list-your-projects

 Raises:
 gen.Return(<Dictionary of the response from Rollbar>)
 """

 args = self._build_potential_args({})
 url = self._generate_escaped_url(API_PROJECT_PATH, args)
 res = yield self._fetch_wrapper(url)
 raise gen.Return(res)

[docs]class Deploy(RollbarBase):

 """Posts a Deploy message to Rollbar.

 https://rollbar.com/docs/deploys_other/

 API Token

 You must use an API token created in your *Project Access Tokens* account
 settings section. This token should have *post_server_item* permissions for
 the actual deploy, and *read* permissions for the Dry run.

 Options

 :environment:
 The environment to deploy to

 :revision:
 The deployment revision

 :local_username:
 The user who initiated the deploy

 :rollbar_username:
 (Optional) The Rollbar Username to assign the deploy to

 :comment:
 (Optional) Comment describing the deploy

 Examples

 .. code-block:: json

 { "actor": "rollbar.Deploy",
 "desc": "update rollbar deploy",
 "options": {
 "environment": "Prod",
 "revision": "%DEPLOY%",
 "local_username": "Kingpin",
 "rollbar_username": "Kingpin",
 "comment": "some comment %DEPLOY%"
 }
 }

 Dry Mode

 Accesses the Rollbar API and validates that the token can access your
 project.
 """
 all_options = {
 'environment': (str, REQUIRED, 'Name of the environment to deploy'),
 'revision': (str, REQUIRED, 'Revision number/sha being deployed'),
 'local_username': (str, 'Kingpin', 'User who deployed'),
 'rollbar_username': (str, '', 'Rollbar username'),
 'comment': (str, '', 'Deploy comment')
 }

 desc = "Sending Deploy {environment}/{revision}"

 @gen.coroutine
 def _deploy(self):
 """Posts a Deploy to rollbar.

 https://rollbar.com/docs/deploys_other/

 Raises:
 gen.Return(<Dictionary of the response from Rollbar>)
 """

 rollbar_username = self.option('rollbar_username')
 if rollbar_username == '':
 rollbar_username = None

 args = self._build_potential_args({
 'environment': self.option('environment'),
 'revision': self.option('revision'),
 'local_username': self.option('local_username'),
 'rollbar_username': rollbar_username,
 'comment': self.option('comment')
 })

 escaped_post = urllib.urlencode(args)
 res = yield self._fetch_wrapper(API_DEPLOY_PATH, post=escaped_post)
 raise gen.Return(res)

 @gen.coroutine
 def _execute(self):
 """Executes an actor and yields the results when its finished.

 raises: gen.Return()
 """
 rollbar_string = (
 'Rollbar Deploy Notification %s/%s' %
 (self.option('environment'), self.option('revision')))

 if self._dry:
 self.log.info('Would have sent %s, but instead just validating '
 'API key.' % rollbar_string)
 yield self._project()
 raise gen.Return()

 self.log.info('Sending %s' % rollbar_string)
 yield self._deploy()
 raise gen.Return()

 © Copyright 2015, Nextdoor.
 Created using Sphinx 1.4.

_modules/kingpin/actors/pingdom.html

 Navigation

 		
 index

 		
 modules |

 		Kingpin 0.4.0 documentation »

 		Module code »

 Source code for kingpin.actors.pingdom

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#
Copyright 2014 Nextdoor.com, Inc

"""
:mod:`kingpin.actors.pingdom`
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Pingdom actors to pause and unpause checks. These are useful when you are aware
of an expected downtime and don't want to be alerted about it. Also known as
Maintenance mode.

Required Environment Variables

:PINGDOM_TOKEN:
 Pingdom API Token

:PINGDOM_USER:
 Pingdom Username (email)

:PINGDOM_PASS:
 Pingdom Password
"""

import logging
import os

from tornado import gen
from tornado import httpclient

from kingpin.constants import REQUIRED
from kingpin.actors import base
from kingpin.actors import exceptions
from kingpin.actors.support import api

log = logging.getLogger(__name__)

__author__ = 'Mikhail Simin <mikhail@nextdoor.com>'

USER = os.getenv('PINGDOM_USER', None)
PASS = os.getenv('PINGDOM_PASS', None)
TOKEN = os.getenv('PINGDOM_TOKEN', None)

class PingdomAPI(api.RestConsumer):

 _ENDPOINT = 'https://api.pingdom.com'
 _CONFIG = {
 'attrs': {
 'checks': {
 'path': '/api/2.0/checks',
 'http_methods': {'get': {}}
 },
 'check': {
 'path': '/api/2.0/checks/%check_id%',
 'http_methods': {'put': {}}
 },
 },
 'auth': {
 'user': USER,
 'pass': PASS
 }
 }

class PingdomClient(api.RestClient):

 # The default exception handling is fine, but the Pingdom API uses a 599 to
 # represent a timeout on the backend of their service.
 _EXCEPTIONS = dict(api.RestClient._EXCEPTIONS)
 _EXCEPTIONS[httpclient.HTTPError]['599'] = None

[docs]class PingdomBase(base.BaseActor):

 """Simple Pingdom Abstract Base Object"""

 all_options = {
 'name': (str, REQUIRED, 'Name of the check'),
 }

 def __init__(self, *args, **kwargs):
 """Check required environment variables."""
 super(PingdomBase, self).__init__(*args, **kwargs)

 rest_client = PingdomClient(
 headers={'App-Key': TOKEN}
)
 self._pingdom_client = PingdomAPI(client=rest_client)

 @gen.coroutine
 def _get_check(self):
 """Get check data for actor's option "name".

 Pingdom returns an array of all checks. This method finds the check
 with the exact name and returns its contents.

 Raises InvalidOptions if the check does not exist.
 """
 resp = yield self._pingdom_client.checks().http_get()
 all_checks = resp['checks']
 check = [c for c in all_checks
 if c['name'] == self.option('name')]

 if not check:
 raise exceptions.InvalidOptions(
 'Check name "%s" was not found.' % self.option('name'))

 raise gen.Return(check[0])

[docs]class Pause(PingdomBase):

 """Start Pingdom Maintenance.

 Pause a particular "check" on Pingdom.

 Options

 :name:
 (Str) Name of the check

 Example

 .. code-block:: json

 { "actor": "pingdom.Pause",
 "desc": "Run Pause",
 "options": {
 "name": "fill-in"
 }
 }

 Dry run

 Will assert that the check name exists, but not take any action on it.
 """

 desc = "Pausing check {name}"

 @gen.coroutine
 def _execute(self):
 check = yield self._get_check()

 if self._dry:
 self.log.info('Would pause %s (%s) pingdom check.' % (
 check['name'], check['hostname']))
 raise gen.Return()

 self.log.info('Pausing %s' % check['name'])
 yield self._pingdom_client.check(
 check_id=check['id']).http_put(paused='true')

[docs]class Unpause(PingdomBase):

 """Stop Pingdom Maintenance.

 Unpause a particular "check" on Pingdom.

 Options

 :name:
 (Str) Name of the check

 Example

 .. code-block:: json

 { "actor": "pingdom.Unpause",
 "desc": "Run unpause",
 "options": {
 "name": "fill-in"
 }
 }

 Dry run

 Will assert that the check name exists, but not take any action on it.
 """

 desc = "Unpausing check {name}"

 @gen.coroutine
 def _execute(self):
 check = yield self._get_check()

 if self._dry:
 self.log.info('Would unpause %s (%s) pingdom check.' % (
 check['name'], check['hostname']))
 raise gen.Return()

 self.log.info('Unpausing %s' % check['name'])
 yield self._pingdom_client.check(
 check_id=check['id']).http_put(paused='false')

 © Copyright 2015, Nextdoor.
 Created using Sphinx 1.4.

_modules/kingpin/actors/packagecloud.html

 Navigation

 		
 index

 		
 modules |

 		Kingpin 0.4.0 documentation »

 		Module code »

 Source code for kingpin.actors.packagecloud

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#
Copyright 2014 Nextdoor.com, Inc

"""
:mod:`kingpin.actors.packagecloud`
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The packagecloud actor allows you to perform maintenance operations on
repositories hosted by packagecloud.io using their API:

https://packagecloud.io/docs/api

Required Environment Variables

:PACKAGECLOUD_ACCOUNT:
 packagecloud account name, i.e. https://packagecloud.io/PACKAGECLOUD_ACCOUNT

:PACKAGECLOUD_TOKEN:
 packagecloud API Token
"""

import datetime
import logging
import os
import re
import sys

from tornado import gen
from tornado_rest_client import api

from kingpin.actors import base
from kingpin.actors import exceptions
from kingpin.constants import REQUIRED

log = logging.getLogger(__name__)

__author__ = 'Charles McLaughlin <charles@nextdoor.com>'

ACCOUNT = os.getenv('PACKAGECLOUD_ACCOUNT', None)
TOKEN = os.getenv('PACKAGECLOUD_TOKEN', None)

class PackagecloudAPI(api.RestConsumer):

 ENDPOINT = 'https://packagecloud.io/api/v1/'
 CONFIG = {
 'attrs': {
 'packages': {
 'path': ('repos/%account%/%repo%/packages.json'
 '?per_page={}'.format(sys.maxint)),
 'http_methods': {'get': {}}
 },
 'delete': {
 'path': 'repos/%account%/%repo%/%distro_version%/%filename%',
 'http_methods': {'delete': {}}
 },
 },
 'auth': {
 'user': TOKEN,
 'pass': ''
 }
 }

[docs]class PackagecloudBase(base.BaseActor):

 """Simple packagecloud Abstract Base Object"""

 def __init__(self, *args, **kwargs):
 """Check required environment variables."""
 super(PackagecloudBase, self).__init__(*args, **kwargs)

 if not ACCOUNT:
 raise exceptions.InvalidCredentials(
 'Missing the "PACKAGECLOUD_ACCOUNT" environment variable.')

 if not TOKEN:
 raise exceptions.InvalidCredentials(
 'Missing the "PACKAGECLOUD_TOKEN" environment variable.')

 rest_client = api.RestClient(timeout=120)
 self._packagecloud_client = PackagecloudAPI(client=rest_client)

 @gen.coroutine
 def _get_all_packages(self, repo):
 """Simple method for fetching a dictionary of all packages in a repo

 Args:
 repo: name of the packagecloud repo to fetch from

 Returns:
 A hash of the packages.
 """
 packages = yield self._packagecloud_client.packages(
 token=TOKEN, account=ACCOUNT, repo=repo).http_get()
 raise gen.Return(packages)

 def _get_package_versions(self, name, packages):
 """Find all versions of a given package.

 Args:
 name: name of the package to look for
 packages: hash of all the packages, as returned by the API

 Returns:
 A hash of package versions sorted by creation date
 """
 versions = [{
 'created_at': datetime.datetime.strptime(
 package['created_at'], '%Y-%m-%dT%H:%M:%S.%fZ'),
 'distro_version': package['distro_version'],
 'filename': package['package_html_url'].split('/')[-1],
 'name': package['name']
 } for package in packages if package['name'] == name]

 versions.sort(key=lambda x: x.get('created_at'), reverse=False)
 return versions

 def _filter_packages(self, regex, packages):
 """Extracts a list of unique package names to delete

 Args:
 regex: regex of package names to delete
 packages: hash of all the packages, as returned by the API

 Returns:
 A list of unique package names that match the delete pattern.
 """
 pattern = re.compile(regex)
 packages_list_to_delete = {package['name'] for package in packages
 if pattern.match(package['name'])}

 self.log.debug('List of packages matching regex (%s): %s' %
 (regex, packages_list_to_delete))

 return packages_list_to_delete

 @gen.coroutine
 def _delete(self, regex, repo, older_than=0,
 number_to_keep=0):
 """Generic packagecloud delete method, optionally supporting deleting
 old packages by date and/or keeping a certain number of packages.

 Args:
 regex: Regex of packages to delete, e.g. pkg1|pkg2
 repo: name of the packagecloud repo to delete from
 older_than: Delete packages created before this number of seconds
 number_to_keep: Keep at least this number of each package

 Returns:
 A list of the packages that were deleted
 """
 all_packages = yield self._get_all_packages(repo=repo)
 packages_list_to_delete = self._filter_packages(regex, all_packages)
 all_packages_deleted = []

 # Loop through each unique package to delete
 for name in packages_list_to_delete:
 package_versions = self._get_package_versions(
 name, all_packages)

 # Create a tally of the packages we delete -- usd to give the user
 # a final helpful log statement about the work we did.
 packages_deleted = []

 # Get a total count of the number of versions of this package in
 # the repo -- this variable will then be counted down as we loop,
 # to prevent us from deleting more than 'number_to_keep' packages.
 number_in_repo = len(package_versions)
 self.log.debug('Scanning %s versions (%s)' %
 (name, number_in_repo))

 for package in package_versions:
 # Safety check -- if there aren't more than the number_to_keep
 # in the repo, then don't bother continuing through the loop
 # for this package. Break out and move to the next name in
 # packages_list_to_delete.
 if number_in_repo <= number_to_keep:
 self.log.debug(
 '%s has only %s package versions left, skipping'
 % (name, number_in_repo))
 break

 # If older_than (time in seconds) was supplied, figure out how
 # old the package is. If the package_age (in seconds) is
 # younger than allowed_age (in seconds), then skip to the next
 # package version in the set.
 if older_than:
 package_age = (datetime.datetime.now() -
 package['created_at'])
 allowed_age = datetime.timedelta(seconds=older_than)
 if package_age <= allowed_age:
 self.log.debug(
 '%s/%s is only %s old, skipping deletion' %
 (package['distro_version'],
 package['name'], package_age))
 continue

 # Finally if we got here, then we have enough packages left in
 # the repo, AND (optionally) this package is older than our
 # cutoff age... so delete the package.
 msg = '%s/%s/%s' % (
 repo, package['distro_version'], package['filename'])
 if self._dry:
 self.log.info('Would have deleted %s' % msg)
 else:
 self.log.info('Deleting %s' % msg)

 yield self._packagecloud_client.delete(
 token=TOKEN, account=ACCOUNT, repo=repo,
 distro_version=package['distro_version'],
 filename=package['filename']
).http_delete()

 # Decrement list of packages to track how many are left
 number_in_repo = number_in_repo - 1

 # Track *every* package we delete in one big dict -- this is
 # used purely for the unit tests to validate which packages
 # were deleted.
 all_packages_deleted.append(package)

 # Track that this package was deleted -- used in the parent for
 # loop to give the user a final tally of the packages that
 # were kept, and that were deleted.
 packages_deleted.append(package)

 # Print out the packages that were not deleted and left in the repo
 all_files = ['%s/%s' %
 (package['distro_version'], package['filename'])
 for package in package_versions]
 deleted_files = ['%s/%s' %
 (package['distro_version'], package['filename'])
 for package in packages_deleted]
 files_left = list(set(all_files) - set(deleted_files))
 self.log.debug('%s remaining packages: %s' % (name, files_left))

 raise gen.Return(all_packages_deleted)

[docs]class Delete(PackagecloudBase):

 """Deletes packages from a PackageCloud repo.

 Searches for packages that match the `packages_to_delete` regex pattern and
 deletes them. If `number_to_keep` is set, we always at least this number
 of versions of the given package intact in the repo. Also if
 `number_to_keep` is set, the older versions of a package (based on upload
 time) packages will be deleted first effectively leaving newer packages
 in the repo.

 Options

 :number_to_keep:
 Keep at least this number of each package
 (defaults to *0*)

 :packages_to_delete:
 Regex of packages to delete, e.g. pkg1|pkg2

 :repo:
 Which packagecloud repo to delete from

 Examples

 .. code-block:: json

 { "desc": "packagecloud Delete example",
 "actor": "packagecloud.Delete",
 "options": {
 "number_to_keep": 10,
 "packages_to_delete": "deleteme",
 "repo": "test"
 }
 }

 """

 all_options = {
 'number_to_keep': (
 int, 0,
 'Keep at least this number of each package'),
 'packages_to_delete': (
 str, REQUIRED,
 'Regex of packages to delete, e.g. pkg1|pkg2'),
 'repo': (
 str, REQUIRED,
 'Which packagecloud repo to delete from'),
 }

 desc = "Deleting {repo}/{packages_to_delete} (keeping {number_to_keep})"

 def __init__(self, *args, **kwargs):
 """Check required environment variables."""
 super(Delete, self).__init__(*args, **kwargs)

 try:
 re.compile(self.option('packages_to_delete'))
 except re.error:
 raise exceptions.InvalidOptions(
 'packages_to_delete is an invalid regex')

 @gen.coroutine
 def _execute(self):
 """Deletes all packages that match the `packages_to_delete` pattern"""
 yield self._delete(
 regex=self.option('packages_to_delete'),
 number_to_keep=self.option('number_to_keep'),
 repo=self.option('repo'))

[docs]class DeleteByDate(PackagecloudBase):

 """Deletes packages from a PackageCloud repo older than X.

 Adds additional functionality to the `Delete` class with a `older_than`
 option. Only packages older than that number of seconds will be deleted.

 Options

 :number_to_keep:
 Keep at least this number of each package
 (defaults to *0*)

 :older_than:
 Delete packages created before this number of seconds

 :packages_to_delete:
 Regex of packages to delete, e.g. pkg1|pkg2

 :repo:
 Which packagecloud repo to delete from

 Examples

 .. code-block:: json

 { "desc": "packagecloud DeleteByDate example",
 "actor": "packagecloud.DeleteByDate",
 "options": {
 "number_to_keep": 10,
 "older_than": 600,
 "packages_to_delete": "deleteme",
 "repo": "test"
 }
 }

 """

 all_options = {
 'number_to_keep': (
 int, 0,
 'Keep at least this number of each package'),
 'older_than': (
 int, REQUIRED,
 'Delete packages created before this number of seconds'),
 'packages_to_delete': (
 str, REQUIRED,
 'Regex of packages to delete, e.g. pkg1|pkg2'),
 'repo': (str, REQUIRED,
 'Which packagecloud repo to delete from')
 }

 desc = "Deleting {repo}/{packages_to_delete} older than {older_than}"

 @gen.coroutine
 def _execute(self):
 yield self._delete(
 regex=self.option('packages_to_delete'),
 number_to_keep=self.option('number_to_keep'),
 older_than=self.option('older_than'),
 repo=self.option('repo'))

[docs]class WaitForPackage(PackagecloudBase):

 """Searches for a package that matches `name` and `version` until found or
 a timeout occurs.

 Options

 :name:
 Name of the package to search for as a regex

 :version:
 Version of the package to search for as a regex

 :repo:
 Which packagecloud repo to delete from

 :sleep:
 Number of seconds to sleep for between each search

 Examples

 .. code-block:: json

 { "desc": "packagecloud WaitForPackage example",
 "actor": "packagecloud.WaitForPackage",
 "options": {
 "name": "findme",
 "version": "0.1",
 "repo": "test",
 "sleep": 10,
 }
 }

 """

 all_options = {
 'name': (
 str, REQUIRED, 'Name of the package to search for as a regex'),
 'version': (
 str, '.*', 'Version of the package to search for as a regex'),
 'repo': (
 str, REQUIRED, 'Which packagecloud repo to search'),
 'sleep': (
 int, 10, 'Number of seconds to sleep for between each search')
 }

 desc = "Waiting for {repo}/{name}@{version} (up to {sleep}s)"

 def __init__(self, *args, **kwargs):
 """Check required environment variables."""
 super(WaitForPackage, self).__init__(*args, **kwargs)

 try:
 re.compile(self.option('name'))
 except re.error:
 raise exceptions.InvalidOptions(
 'name is an invalid regex')

 try:
 re.compile(self.option('version'))
 except re.error:
 raise exceptions.InvalidOptions(
 'version is an invalid regex')

 @gen.coroutine
 def _search(self, repo, name, version):
 """Searches for a given package until found or a timeout occurs.

 Args:
 repo: name of the repo to search
 name: Name of the package to search for as a regex
 version: Version of the package to search for as a regex

 Returns:
 A list of the packages that were found
 """

 all_packages = yield self._get_all_packages(repo=repo)
 self.log.debug('Found all packages: %s' % all_packages)

 name_pattern = re.compile(name)
 version_pattern = re.compile(version)

 matched_packages = [p for p in all_packages
 if name_pattern.match(p['name']) and
 version_pattern.match(p['version'])]

 raise gen.Return(matched_packages)

 @gen.coroutine
 def _execute(self):
 """Execute method for the WaitForPackage actor"""
 while True:
 self.log.info('Searching for %s %s...' %
 (self.option('name'), self.option('version')))

 matched_packages = yield self._search(
 repo=self.option('repo'),
 name=self.option('name'),
 version=self.option('version'))

 if len(matched_packages) > 0:
 self.log.info('Found it!')
 raise gen.Return()

 self.log.debug('Not found, sleeping for (%s)'
 % self.option('sleep'))
 yield gen.sleep(self.option('sleep'))

 © Copyright 2015, Nextdoor.
 Created using Sphinx 1.4.

_modules/kingpin/actors/group.html

 Navigation

 		
 index

 		
 modules |

 		Kingpin 0.4.0 documentation »

 		Module code »

 Source code for kingpin.actors.group

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#
Copyright 2014 Nextdoor.com, Inc

"""
:mod:`kingpin.actors.group`
^^^^^^^^^^^^^^^^^^^^^^^^^^^

Group a series of other `BaseActor` into either synchronous
or asynchronous stages.
"""

import logging

from tornado import gen
import demjson

from kingpin import utils as kp_utils
from kingpin.actors import base
from kingpin.actors import exceptions
from kingpin.actors import utils
from kingpin.constants import REQUIRED

log = logging.getLogger(__name__)

__author__ = 'Matt Wise <matt@nextdoor.com>'

[docs]class BaseGroupActor(base.BaseActor):

 """Group together a series of other `kingpin.actors.base.BaseActor` objects

 :acts:
 [<list of `kingpin.actors.base.BaseActor` objects to execute>]

 """

 # By default, group actors have no timeout. We rely on the individual
 # actors to expire on their own. This is, of course, overrideable in the
 # JSON.
 default_timeout = None

 all_options = {
 'contexts': ((dict, str, list), [], "List of contextual hashes."),
 'acts': (list, REQUIRED, "Array of actor definitions.")
 }

 # Override the BaseActor strict_init_context setting. Since there may be
 # nested-groups that have their own context tokens, we do not require
 # that all of the {KEY}'s inside of the self._options dict are filled in
 # the moment that this actor is instantiated.
 strict_init_context = False

 def __init__(self, *args, **kwargs):
 """Initializes all of the sub actors.

 By actually initializing all of the Actors supplied to us during the
 __init__, we effectively do a full instantiation of every Actor defined
 in the supplied JSON all at once and upfront long before we try to
 execute any code. This greatly increases our chances of catching JSON
 errors because every single object is pre-initialized before we ever
 begin executing any of our steps.

 Note about init_tokens:
 The group.BaseActor and misc.Macro actors support the concept of
 externally supplied data (usually os.environ) being used as available
 tokens for %TOKEN% parsing when reading JSON/YAML scripts. By passing
 this data between these three actors, we are able to allow nested
 token passing.

 See `Token-replacement <basicuse.html#token-replacement>` for more
 info.
 """
 super(BaseGroupActor, self).__init__(*args, **kwargs)

 # DEPRECATE IN v0.5.0
 if type(self.option('contexts')) == dict:
 try:
 filename = self.option('contexts').get('file', '')
 open(filename)
 except IOError as e:
 self.log.error('Option `contexts` must have valid `file`. '
 'Received: %s' % filename)
 raise exceptions.InvalidOptions(e)
 # END DEPRECATION

 # Pre-initialize all of our actions!
 self._actions = self._build_actions()

 def _build_actions(self):
 """Builds either a single set of actions, or multiple sets.

 If no 'contexts' were passed in, then we simply build the actors that
 are defined in the 'acts' option for the group.

 If any 'contexts' were passed in, then this method will create as many
 groups of actions as there are in the list of contexts. For each dict
 in the 'contexts' list, a new group of actors is created with that
 information.

 Note: Because groups may contain nested group actors, any options
 passed into this actors 'init_context' are also passed into the
 actors that we're intantiating.
 """
 contexts = self.option('contexts')
 if not contexts:
 return self._build_action_group(self._init_context)

 # If the data passed into the 'contexts' is a list of dicts, we take it
 # as is and do nothing to it.
 if type(contexts) == list:
 context_data = self.option('contexts')
 # DEPRECATE IN v0.5.0
 elif type(contexts) == dict:
 context_string = open(contexts['file']).read()
 context_string = kp_utils.populate_with_tokens(
 string=context_string,
 tokens=contexts.get('tokens', {}),
 strict=True)
 context_data = demjson.decode(context_string)
 # END DEPRECATION

 # If the data passed in is a string, it must be a pointer to a file
 # with contexts in it. We read that file, and we parse it for any
 # missing tokens. We use the "init tokens" that made it into this actor
 # as available token substitutions.
 elif isinstance(contexts, basestring):
 context_data = kp_utils.convert_script_to_dict(
 contexts, self._init_tokens)

 actions = []
 for context in context_data:
 combined_context = dict(self._init_context.items() +
 context.items())
 self.log.debug('Inherited context %s' % self._init_context.items())
 self.log.debug('Specified context %s' % context.items())
 self.log.debug('Building acts with parameters: %s' %
 combined_context)
 for action in self._build_action_group(context=combined_context):
 actions.append(action)

 return actions

 def _build_action_group(self, context=None):
 """Build up all of the actors we need to execute.

 Builds a list of actors to execute and returns the list. The list can
 then either be yielded as a whole (for an async operation), or
 individually (for a synchronous operation).

 Returns:
 A list of references to <actor objects>.
 """
 actions = []
 self.log.debug('Building %s actors' % len(self.option('acts')))
 for act in self.option('acts'):
 act['init_context'] = context.copy()
 act['init_tokens'] = self._init_tokens.copy()
 actor = utils.get_actor(act, dry=self._dry)
 actions.append(actor)
 self.log.debug('Actor %s built' % actor)
 return actions

 def _get_exc_type(self, exc_list):
 """Return Unrecoverable exception if at least one is in exc_list.

 Takes in a list of exceptions, and returns either a
 RecoverableActorFailure or an UnrecoverableActorFailure based on the
 exceptions that were passed in.

 Args:
 exc_list: List of Exception objects

 Returns:
 RecoverableActorFailure or UnrecoverableActorFailure
 """
 # Start by assuming we're going to be a RecoverableActorFailure
 wrapper_base = exceptions.RecoverableActorFailure
 for exc in exc_list:
 if isinstance(exc, exceptions.UnrecoverableActorFailure):
 wrapper_base = exceptions.UnrecoverableActorFailure
 return wrapper_base

 @gen.coroutine
 def _execute(self):
 """Executes the actions configured, and returns.

 Note: Expects the sub-class to implement self._run_actions()

 If an actor execution fails in _run_actions(), then that exception is
 raised up the stack.
 """
 self.log.info('Beginning %s actions' % len(self._actions))
 yield self._run_actions()
 raise gen.Return()

[docs]class Sync(BaseGroupActor):

 """Execute a series of `kingpin.actors.base.BaseActor` synchronously.

 Groups together a series of Actors and executes them synchronously
 in the order that they were defined.

 Options

 :acts:
 An array of individual Actor definitions.

 :contexts:

 This variable can be one of two formats:

 * A list of dictionaries with *contextual tokens* to pass into the actors
 at instantiation time. If the list has more than one element, then
 every actor defined in ``acts`` will be instantiated once for each item
 in the ``contexts`` list.
 * A string that points to a file with a list of contexts, just like the
 above dictionary.
 * (_Deprecation warning, this is going away in v0.4.0. Use the 'str'
 method above!_) A dictionary of ``file`` and ``tokens``. The file
 should be a relative path with data formatted same as stated above. The
 tokens need to be the same format as a Macro actor: a dictionary
 passing token data to be used.

 Timeouts

 Timeouts are disabled specifically in this actor. The sub-actors can still
 raise their own `kingpin.actors.exceptions.ActorTimedOut` exceptions, but
 since the group actors run an arbitrary number of sub actors, we have
 chosen to not have this actor specifically raise its own
 `kingpin.actors.exceptions.ActorTimedOut` exception unless the user sets
 the ``timeout`` setting.

 Examples

 Creates two arrays ... but sleeps 60 seconds between the two, then
 does not sleep at all after the last one:

 .. code-block:: json

 { "desc": "Clone, then sleep ... then clone, then sleep shorter...",
 "actor": "group.Sync",
 "options": {
 "contexts": [
 { "ARRAY": "First", "SLEEP": "60", },
 { "ARRAY": "Second", "SLEEP": "0", }
],
 "acts": [
 { "desc": "do something",
 "actor": "server_array.Clone",
 "options": {
 "source": "template",
 "dest": "{ARRAY}"
 }
 },
 { "desc": "sleep",
 "actor": "misc.Sleep",
 "options": {
 "sleep": "{SLEEP}",
 }
 }
]
 }
 }

 Alternatively if no `contexts` are needed you can use the `array` syntax.

 .. code-block:: json

 [
 {
 "actor": "server_array.Clone",
 "options": {
 "source": "template",
 "dest": "%ARRAY%"
 }
 },
 {
 "actor": "misc.Sleep",
 "options": { "sleep": 30 }
 }
]

 Dry Mode

 Passes on the Dry mode setting to the acts that are called. Does **not**
 stop execution when one of the acts fails. Instead Group actor will finish
 all acts with warnings, and raise an error at the end of execution.

 This provides the user with an insight to all the errors that are possible
 to encounter, rather than abort and quit on the first one.

 Failure

 In the event that an act fails, this actor will return the failure
 immediately. Because the acts are executed in-order of definition, the
 failure will prevent any further acts from executing.

 The behavior is different in the dry run (read above.)
 """

 @gen.coroutine
 def _run_actions(self):
 """Synchronously executes all of the Actor.execute() methods.

 If any one actor fails, we prevent execution of the rest of the actors.
 During a dry run - all acts are executed, and a warning is displayed.

 raises:
 In dry run - worst of all the raised errors.
 In real run - the first of the exceptions.
 """

 errors = []

 for act in self._actions:
 self.log.debug('Beginning "%s"..' % act._desc)
 try:
 yield act.execute()
 except exceptions.ActorException as e:
 if self._dry:
 self.log.error('%s failed: %s' % (act._desc, str(e)))
 self.log.warning('Continuing since this is a dry run.')
 errors.append(e)
 else:
 self.log.error('Aborting sequential execution because '
 '"%s" failed' % act._desc)
 raise

 if errors:
 ExcType = self._get_exc_type(errors)
 raise ExcType('Exceptions raised by %s of %s actors in "%s".' % (
 len(errors), len(self._actions), self._desc))

[docs]class Async(BaseGroupActor):

 """Execute several `kingpin.actors.base.BaseActor` objects asynchronously.

 Groups together a series of Actors and executes them asynchronously -
 waiting until all of them finish before returning.

 Options

 :concurrency:
 Max number of concurrent executions. This will fire off N executions
 in parallel, and continue with the remained as soon as the first
 execution is done. This is faster than creating N Sync executions.

 :acts:
 An array of individual Actor definitions.

 :contexts:

 This variable can be one of two formats:

 * A list of dictionaries with *contextual tokens* to pass into the actors
 at instantiation time. If the list has more than one element, then
 every actor defined in ``acts`` will be instantiated once for each item
 in the ``contexts`` list.
 * A dictionary of ``file`` and ``tokens``. The file should be a relative
 path with data formatted same as stated above. The tokens need to be
 the same format as a Macro actor: a dictionary passing token data to be
 used.

 Timeouts

 Timeouts are disabled specifically in this actor. The sub-actors can still
 raise their own `kingpin.actors.exceptions.ActorTimedOut` exceptions, but
 since the group actors run an arbitrary number of sub actors, we have
 chosen to not have this actor specifically raise its own
 `kingpin.actors.exceptions.ActorTimedOut` exception unless the user sets
 the ``timeout`` setting.

 Examples

 Clone two arrays quickly.

 .. code-block:: json

 { "desc": "Clone two arrays",
 "actor": "group.Async",
 "options": {
 "contexts": [
 { "ARRAY": "NewArray1" },
 { "ARRAY": "NewArray2" }
],
 "acts": [
 { "desc": "do something",
 "actor": "server_array.Clone",
 "options": {
 "source": "template",
 "dest": "{ARRAY}",
 }
 }
]
 }
 }

 Dry Mode

 Passes on the Dry mode setting to the sub-actors that are called.

 Failure

 In the event that one or more ``acts`` fail in this group, the entire group
 acts will return a failure to Kingpin. Because multiple actors are
 executing all at the same time, the all of these actors will be allowed to
 finish before the failure is returned.
 """

 all_options = {
 'concurrency': (int, 0, "Max number of concurrent executions."),
 'contexts': ((dict, list), [], "List of contextual hashes."),
 'acts': (list, REQUIRED, "Array of actor definitions.")
 }

 @gen.coroutine
 def _run_actions(self):
 """Asynchronously executes all of the Actor.execute() methods.

 All actors execute asynchronously, so we don't bother checking whether
 they've failed or not here. The BaseGroupActor will return a True/False
 based on whether or not all actors succeeded (True) or if one-or-more
 failed (False).
 """

 # This is an interesting tornado-ism. Here we generate and fire off
 # each of the acts asynchronously into the IOLoop, and we record
 # references to those tasks. However, we don't yield (wait) on them to
 # finish.
 tasks = []

 if self.option('concurrency'):
 self.log.info('Concurrency set to %s' % self.option('concurrency'))

 for act in self._actions:
 tasks.append(act.execute())

 if not self.option('concurrency'):
 # No concurrency limit - continue the loop without checks.
 continue

 running_tasks = len([t for t in tasks if t.running()])

 if running_tasks < self.option('concurrency'):
 # We can queue more tasks, continue the loop to add one more.
 continue

 self.log.debug('Concurrency saturated. Waiting...')
 while running_tasks >= self.option('concurrency'):
 yield gen.moment
 running_tasks = len([t for t in tasks if t.running()])

 self.log.debug('Concurrency desaturated: %s<%s. Continuing.' % (
 running_tasks, self.option('concurrency')))

 # Now that we've fired them off, we walk through them one-by-one and
 # check on their status. If they've raised an exception, we catch it
 # and log it into a list for further processing.
 errors = []
 for t in tasks:
 try:
 yield t
 except exceptions.ActorException as e:
 errors.append(e)

 # Now, if there are exceptions in the list, we generate the appropriate
 # exception type (recoverable vs unrecoverable), and raise it up the
 # stack. The individual exceptions are swallowed here, but thats OK
 # because the BaseActor for each of the acts that failed has already
 # handled printing out the log message with the failure.
 if errors:
 ExcType = self._get_exc_type(errors)
 raise ExcType('Exceptions raised by %s of %s actors in "%s".' % (
 len(errors), len(self._actions), self._desc))

 © Copyright 2015, Nextdoor.
 Created using Sphinx 1.4.

