
Kingpin Documentation
Release 0.3.0

Matt Wise, Mikhail Simin

May 11, 2016

Contents

1 Installation 3
1.1 Github Checkout/Install . 3
1.2 Direct PIP Install . 3
1.3 Zip File Packaging . 4

2 Basic Use 5
2.1 Credentials . 5
2.2 JSON-based DSL . 6

2.2.1 Validation . 6
2.2.2 The Script . 6

3 Actors 11
3.1 Amazon Web Services . 11

3.1.1 Documentation . 11
3.1.2 CloudFormation . 11
3.1.3 Elastic Load Balancing (ELB) . 12
3.1.4 Identity and Access Management (IAM) . 14
3.1.5 Simple Queue Service (SQS) . 15

3.2 Grouping Actors . 17
3.2.1 Async . 17
3.2.2 Sync . 18

3.3 Hipchat . 19
3.3.1 Message . 19
3.3.2 Topic . 19

3.4 Librato . 20
3.4.1 Annotation . 20

3.5 Miscellaneous . 20
3.5.1 Macro . 20
3.5.2 Sleep . 21
3.5.3 GenericHTTP . 22

3.6 PackageCloud . 22
3.6.1 Documentation . 22
3.6.2 Delete . 23
3.6.3 DeleteByDate . 23
3.6.4 WaitForPackage . 24

3.7 Pingdom . 24
3.7.1 Pause . 24
3.7.2 Unpause . 24

i

3.8 RightScale . 25
3.8.1 Documentation . 25
3.8.2 Deployment . 25
3.8.3 Alert Specs . 26
3.8.4 Server Arrays . 27
3.8.5 Multi Cloud Images . 34

3.9 Rollbar . 35
3.9.1 Deploy . 35

3.10 Slack . 36
3.10.1 Message . 36

4 Security 39
4.1 URLLIB3 Warnings Disabled . 39

5 Development 41
5.1 Setting up your Environment . 41

5.1.1 Create your VirtualEnvironment . 41
5.1.2 Check out the code . 41
5.1.3 Install the test-specific dependencies . 41

5.2 Testing . 41
5.2.1 Unit Tests . 41
5.2.2 Integration Tests . 42

5.3 Class/Object Architecture . 43
5.4 Setup . 43
5.5 Actor Design . 44

5.5.1 Hello World Actor Example . 44
5.5.2 Required Options . 45
5.5.3 Required Methods . 46
5.5.4 Helper Methods/Objects . 47
5.5.5 self.option . 47
5.5.6 Exception Handling . 47

5.6 Simple API Access Objects . 47
5.6.1 HTTPBin Actor with the RestConsumer . 47
5.6.2 Exception Handling in HTTP Requests . 48

6 Full Module Docs 51
6.1 kingpin.actors.aws.base . 51
6.2 kingpin.actors.aws.cloudformation . 51
6.3 kingpin.actors.aws.elb . 53
6.4 kingpin.actors.aws.iam . 55
6.5 kingpin.actors.aws.settings . 56
6.6 kingpin.actors.aws.sqs . 56
6.7 kingpin.actors.base . 57
6.8 kingpin.actors.exceptions . 58
6.9 kingpin.actors.group . 59
6.10 kingpin.actors.hipchat . 61
6.11 kingpin.actors.librato . 62
6.12 kingpin.actors.misc . 63
6.13 kingpin.actors.packagecloud . 65
6.14 kingpin.actors.pingdom . 66
6.15 kingpin.actors.rightscale.api . 67
6.16 kingpin.actors.rightscale.base . 68
6.17 kingpin.actors.rightscale.server_array . 68
6.18 kingpin.actors.rollbar . 75

ii

6.19 kingpin.actors.slack . 76
6.20 kingpin.actors.utils . 78
6.21 kingpin.utils . 78

Python Module Index 81

iii

iv

Kingpin Documentation, Release 0.3.0

Kingpin: the chief element of any system, plan, or the like.

Kingpin provides 3 main functions:

• API Abstraction - Job instructions are provided to Kingpin via a JSON based DSL (read below). The schema
is strict and consistent from one action to another.

• Automation Engine - Kingpin leverages python’s tornado engine.

• Parallel Execution - Aside from non-blocking network IO, Kingpin can execute any action in parallel with
another. (Read group.Async below)

Contents 1

http://tornado.readthedocs.org/

Kingpin Documentation, Release 0.3.0

2 Contents

CHAPTER 1

Installation

The simplest installation method is via PyPI.

$ pip install --process-dependency-links kingpin

Note, we strongly recommend running the code inside a Python virtual environment. All of our examples below will
show how to do this.

1.1 Github Checkout/Install

$ virtualenv .venv --no-site-packages
New python executable in .venv/bin/python
Installing setuptools, pip...done.
$ source .venv/bin/activate
(.venv) $ git clone https://github.com/Nextdoor/kingpin
Cloning into 'kingpin'...
remote: Counting objects: 1824, done.
remote: Compressing objects: 100% (10/10), done.
remote: Total 1824 (delta 4), reused 0 (delta 0)
Receiving objects: 100% (1824/1824), 283.35 KiB, done.
Resolving deltas: 100% (1330/1330), done.
(.venv)$ cd kingpin/
(.venv)$ python setup.py install
zip_safe flag not set; analyzing archive contents...
...

1.2 Direct PIP Install

$ virtualenv .venv --no-site-packages
New python executable in .venv/bin/python
Installing setuptools, pip...done.
$ source .venv/bin/activate
(.venv) $ git clone https://github.com/Nextdoor/kingpin
(.venv)$ pip install --process-dependency-links git+https://github.com/Nextdoor/kingpin.git
Downloading/unpacking git+https://github.com/Nextdoor/kingpin.git

Cloning https://github.com/Nextdoor/kingpin.git (to master) to /var/folders/j6/qyd2dp6n3f156h6xknndt35m00010b/T/pip-H9LwNt-build
...

3

https://pypi.python.org/pypi/kingpin

Kingpin Documentation, Release 0.3.0

1.3 Zip File Packaging

For the purpose of highly reliable and fast installations, you can also execute make package to generate a Python-
executable .zip file. This file is built with all of the dependencies installed inside of it, and can be executed on the
command line very simply:

$ virtualenv .venv --no-site-packages
New python executable in .venv/bin/python
Installing setuptools, pip...done.
$ source .venv/bin/activate
$ make kingpin.zip
$ python kingpin.zip --version
0.2.5

VirtualEnv Note

Its not strictly necessary to set up the virtual environment like we did in the example above – but it helps prevent any
confusion during the build process around what packages are available or are not.

4 Chapter 1. Installation

CHAPTER 2

Basic Use

$ kingpin --help
Usage: kingpin [json file] <options>

Options:
--version show program's version number and exit
-h, --help show this help message and exit
-j JSON, --json=JSON Path to JSON Deployment File
-d, --dry Executes a dry run only.
-l LEVEL, --level=LEVEL

Set logging level (INFO|WARN|DEBUG|ERROR)
--debug Equivalent to --level=DEBUG
-c, --color Colorize the log output

The simplest use cases of this code can be better understood by looking at the simple.json file. Executing it is a
simple as this:

$ export RIGHTSCALE_TOKEN=xyz
$ export RIGHTSCALE_ENDPOINT=https://us-3.rightscale.com
$ (.venv)$ kingpin -j examples/simple.json -d
2014-09-01 21:18:09,022 INFO [main stage (DRY Mode)] Beginning
2014-09-01 21:18:09,022 INFO [stage 1 (DRY Mode)] Beginning
2014-09-01 21:18:09,022 INFO [copy serverA (DRY Mode)] Beginning
2014-09-01 21:18:09,023 INFO [copy serverB (DRY Mode)] Beginning
2014-09-01 21:18:09,027 INFO [copy serverC (DRY Mode)] Beginning
2014-09-01 21:18:09,954 INFO [copy serverA (DRY Mode)] Verifying that array "kingpin-integration-testing" exists
...
2014-09-01 21:18:14,533 INFO [stage 3 (DRY Mode)] Finished, success? True
2014-09-01 21:18:14,533 INFO [main stage (DRY Mode)] Finished, success? True

Kingpin always executes a dry run before executing. Each actor specifies their own definition of a dry run. Actors are
designed to do as much checking in the dry run as possible to assure that everything will work during real execution.

It’s possible, with extreme discouragement to skip the default dry run by setting SKIP_DRY environment variable.

2.1 Credentials

In an effort to keep the commandline interface of Kingpin simple, the majority of the configuration settings used
at runtime are actually set as environment variables. Individual Kingpin Actors have their credential requirements
documented in their specific documentation (see below).

5

Kingpin Documentation, Release 0.3.0

2.2 JSON-based DSL

The entire model for the configuration is based on the concept of a JSON dictionary that contains at least one actor
configuration. This JSON format is highly structured and must rigidly conform to the kingpin.schema.

2.2.1 Validation

The JSON file will be validated for schema-conformity as one of the first things that happens at load-time when the
app starts up. If it fails, you will be notified immediately. This is performed in misc.Macro actor.

2.2.2 The Script

Definition: The blueprint or roadmap that outlines a movie story through visual descriptions, actions of characters
and their dialogue. The term “script” also applies to stageplays as well.

Every Kingpin script is a chunk of JSON-encoded data that contains actors. Each actor configuration includes the
same three parameters: actor, desc and options.

The simplest script will have a single configuration that executes a single actor. More complex scripts can be created
with our group.Sync and group.Async actors which can be used to group together multiple actors and execute
them in a predictable order.

Schema Description

The JSON schema is simple. We take a single JSON object that has a few fields:

• actor - A text-string describing the name of the Actor package and class. For example,
kingpin.actors.rightscale.server_array.Clone, or misc.Sleep.

• condition - A bool or string that indicates whether or not to execute this actor.

• desc - A text-string describing the name of the stage or action. Meant to ensure that the logs are very human
readable.

• warn_on_failure - True/False whether or not to ignore an Actors failure and return True anyways. Defaults
to False, but if True a warning message is logged.

• timeout - Maximum time (in seconds) for the actor to execute before raising an ActorTimedOut exception
is raised.

• options - A dictionary of key/value pairs that are required for the specific actor that you’re instantiating.
See individual Actor documentation below for these options.

The simples JSON file could look like this:

{ "desc": "Hipchat: Notify Oncall Room",
"actor": "hipchat.Message",
"condition": "true",
"warn_on_failure": true,
"timeout": 30,
"options": {
"message": "Beginning release %RELEASE%", "room": "Oncall"

}
}

However, much more complex configurations can be created by using the group.Sync and group.Async actors
to describe massively more complex deployents.

6 Chapter 2. Basic Use

Kingpin Documentation, Release 0.3.0

Conditional Execution

The base.BaseActor definition supports a condition parameter that can be used to enable or disable execution
of an actor in a given Kingpin run. The field defaults to enabled, but takes many different values which allow you to
choose whether or not to execute portions of your script.

Conditions that behave as False:

0, '0', 'False', 'FALse', 'FALSE'

Conditions that behave as True:

'any string', 'true', 'TRUE', '1', 1

Example usage:

{ "desc": "Hipchat: Notify Oncall Room",
"actor": "hipchat.Message",
"condition": "%SEND_MESSAGE%",
"warn_on_failure": true,
"options": {
"message": "Beginning release %RELEASE%", "room": "Oncall"

}
}

JSON Commenting

Because these JSON scripts can get quite large, Kingping leverages the demjson package to parse your script. This
package is slightly more graceful when handling syntax issues (extra commas, for example), and allows for JavaScript
style commenting inside of the script.

Take this example:

{ "actor": "misc.Sleep",

/* Cool description */
"desc": 'This is funny',

/* This shouldn't end with a comma, but does */
"options": { "time": 30 }, }

The above example would fail to parse in most JSON parsers, but in demjson it works just fine.

Timeouts

By default, Kingpin actors are set to timeout after 3600s (1 hour). Each indivudal actor will raise an
ActorTimedOut exception after this timeout has been reached. The ActorTimedOut exception is considered
a RecoverableActorFailure, so the warn_on_failure setting applies here and thus the failure can be
ignored if you choose to.

Additionally, you can override the global default setting on the commandline with an environment variable:

• DEFAULT_TIMEOUT - Time (in seconds) to use as the default actor timeout.

Here is an example log output when the timer is exceeded:

2.2. JSON-based DSL 7

Kingpin Documentation, Release 0.3.0

$ DEFAULT_TIMEOUT=1 SLEEP=10 kingpin -j examples/sleep.json
11:55:16 INFO Rehearsing... Break a leg!
11:55:16 INFO [DRY: Kingpin] Preparing actors from examples/sleep.json
11:55:16 INFO Rehearsal OK! Performing!
11:55:16 INFO Lights, camera ... action!
11:55:16 INFO [Kingpin] Preparing actors from examples/sleep.json
11:55:17 ERROR [Kingpin] kingpin.actors.misc.Macro._execute() execution exceeded deadline: 1s
11:55:17 ERROR [Sleep for some amount of time] kingpin.actors.misc.Sleep._execute() execution exceeded deadline: 1s
11:55:17 CRITICAL [Kingpin] kingpin.actors.misc.Macro._execute() execution exceeded deadline: 1s
11:55:17 CRITICAL [Sleep for some amount of time] kingpin.actors.misc.Sleep._execute() execution exceeded deadline: 1s
11:55:17 ERROR Kingpin encountered mistakes during the play.
11:55:17 ERROR kingpin.actors.misc.Macro._execute() execution exceeded deadline: 1s

Disabling the Timeout

You can disable the timeout on any actor by setting timeout: 0 in your JSON.

Group Actor Timeouts

Group actors are special – as they do nothing but execute other actors. Although they support the timeout: x
setting, they default to disabling the timeout (timeout: 0). This is done because the individual timeouts are
generally owned by the individual actors. A single actor that fails will propagate its exception up the chain and
through the Group actor just like any other actor failure.

As an example... If you take the following example code:

{ "desc": "Outer group",
"actor": "group.Sync",
"options": {
"acts": [

{ "desc": "Sleep 10 seconds, but fail",
"actor": "misc.Sleep",
"timeout": 1,
"warn_on_failure": true,
"options": {
"sleep": 10

}
},
{ "desc": "Sleep 2 seconds, but don't fail",
"actor": "misc.Sleep",
"options": {
"sleep": 2

}
}

]
}

}

The first misc.Sleep actor will fail, but only warn (warn_on_failure=True) about the failure. The parent
group.Sync actor will continue on and allow the second misc.Sleep actor to continue.

Token-replacement

Environmental Tokens

In an effort to allow for more re-usable JSON files, tokens can be inserted into the raw JSON file like this
%TOKEN_NAME%. These will then be dynamically swapped with environment variables found at execution time.
Any missing environment variables will cause the JSON parsing to fail and will notify you immediately.

8 Chapter 2. Basic Use

Kingpin Documentation, Release 0.3.0

For an example, take a look at the complex.json file, and these examples of execution.

Here we forget to set any environment variables
$ kingpin -j examples/complex.json -d
2014-09-01 21:29:47,373 ERROR Invalid Configuration Detected: Found un-matched tokens in JSON string: ['%RELEASE%', '%OLD_RELEASE%']

Here we set one variable, but miss the other one
$ RELEASE=0001a kingpin -j examples/complex.json -d
2014-09-01 21:29:56,027 ERROR Invalid Configuration Detected: Found un-matched tokens in JSON string: ['%OLD_RELEASE%']

Finally we set both variables and the code begins...
$ OLD_RELEASE=0000a RELEASE=0001a kingpin -j examples/complex.json -d
2014-09-01 21:30:03,886 INFO [Main (DRY Mode)] Beginning
2014-09-01 21:30:03,886 INFO [Hipchat: Notify Oncall Room (DRY Mode)] Beginning
2014-09-01 21:30:03,886 INFO [Hipchat: Notify Oncall Room (DRY Mode)] Sending message "Beginning release 0001a" to Hipchat room "Oncall"
...

Contextual Tokens

Once the initial JSON files have been loaded up, we have a second layer of tokens that can be referenced. These tokens
are known as contextual tokens. These contextual tokens are used during-runtime to swap out strings with variables.
Currently only the group.Sync and group.Async actors have the ability to define usable tokens, but any actor
can then reference these tokens.

Contextual tokens for simple variable behavior

{ "desc": "Send out hipchat notifications",
"actor": "group.Sync",
"options": {

"contexts": [{ "ROOM": "Systems" }],
"acts": [

{ "desc": "Notify {ROOM}",
"actor": "hipchat.Message",
"options": {
"room": "{ROOM}",
"message": "Hey room .. I'm done with something"

}
}

]
}

}

2015-01-14 15:03:16,840 INFO [DRY: Send out hipchat notifications] Beginning 1 actions
2015-01-14 15:03:16,840 INFO [DRY: Notify Systems] Sending message "Hey room .. I'm done with something" to Hipchat room "Systems"

Contextual tokens used for iteration

{ "desc": "Send ending notifications...", "actor": "group.Async",
"options": {
"contexts": [

{ "ROOM": "Engineering", "WISDOM": "Get back to work" },
{ "ROOM": "Cust Service", "WISDOM": "Have a nice day" }

],
"acts": [

{ "desc": "Notify {ROOM}",
"actor": "hipchat.Message",
"options": {

"room": "{ROOM}",
"message": "Hey room .. I'm done with the release. {WISDOM}"

}

2.2. JSON-based DSL 9

Kingpin Documentation, Release 0.3.0

}
]

}
}

2015-01-14 15:02:22,165 INFO [DRY: Send ending notifications...] Beginning 2 actions
2015-01-14 15:02:22,165 INFO [DRY: Notify Engineering] Sending message "Hey room .. I'm done with the release. Get back to work" to Hipchat room "Engineering"
2015-01-14 15:02:22,239 INFO [DRY: Notify Cust Service] Sending message "Hey room .. I'm done with the release. Have a nice day" to Hipchat room "Cust Service"

Early Actor Instantiation

Again, in an effort to prevent mid-run errors, we pre-instantiate all Actor objects all at once before we ever begin
executing code. This ensures that major typos or misconfigurations in the JSON will be caught early on.

10 Chapter 2. Basic Use

CHAPTER 3

Actors

Definition: a participant in an action or process.

3.1 Amazon Web Services

3.1.1 Documentation

kingpin.actors.aws.base

The AWS Actors allow you to interact with the resources (such as SQS and ELB) inside your Amazon AWS account.
These actors all support dry runs properly, but each actor has its own caveats with dry=True. Please read the
instructions below for using each actor.

Required Environment Variables

AWS_ACCESS_KEY_ID Your AWS access key

AWS_SECRET_ACCESS_KEY Your AWS secret

3.1.2 CloudFormation

kingpin.actors.aws.cloudformation

class kingpin.actors.aws.cloudformation.Create(*args, **kwargs)
Creates a CloudFormation stack.

Creates a CloudFormation stack from scratch and waits until the stack is fully built before exiting the actor.

Options

Capabilities A list of CF capabilities to add to the stack.

Disable_rollback Set to True to disable rollback of the stack if creation failed.

Name The name of the queue to create

Parameters A dictionary of key/value pairs used to fill in the parameters for the CloudFormation
template.

Region AWS region (or zone) string, like ‘us-west-2’

Template String of path to CloudFormation template. Can either be in the form of a local file path
(ie, /my_template.json) or a URI (ie https://my_site.com/cf.json).

11

Kingpin Documentation, Release 0.3.0

Timeout_in_minutes The amount of time that can pass before the stack status becomes CRE-
ATE_FAILED.

Examples

{ "desc": "Create production backend stack",
"actor": "aws.cloudformation.Create",
"options": {

"capabilities": ["CAPABILITY_IAM"],
"disable_rollback": true,
"name": "%CF_NAME%",
"parameters": {
"test_param": "%TEST_PARAM_NAME%",

},
"region": "us-west-1",
"template": "/examples/cloudformation_test.json",
"timeout_in_minutes": 45,

}
}

Dry Mode

Validates the template, verifies that an existing stack with that name does not exist. Does not create the stack.

class kingpin.actors.aws.cloudformation.Delete(*args, **kwargs)
Deletes a CloudFormation stack

Options

Name The name of the queue to create

Region AWS region (or zone) string, like ‘us-west-2’

Examples

{ "desc": "Create production backend stack",
"actor": "aws.cloudformation.Create",
"options" {

"region": "us-west-1",
"name": "%CF_NAME%",

}
}

Dry Mode

Validates that the CF stack exists, but does not delete it.

3.1.3 Elastic Load Balancing (ELB)

kingpin.actors.aws.elb

class kingpin.actors.aws.elb.WaitUntilHealthy(*args, **kwargs)
Wait indefinitely until a specified ELB is considered “healthy”.

This actor will loop infinitely until a healthy threshold of the ELB is met. The threshold can be reached when
the count as specified in the options is less than or equal to the number of InService instances in the ELB.

Another situation is for count to be a string specifying a percentage (see examples). In this case the percent of
InService instances has to be greater than the count percentage.

Options

12 Chapter 3. Actors

Kingpin Documentation, Release 0.3.0

Name The name of the ELB to operate on

Count Number, or percentage of InService instance to consider this ELB healthy

Region AWS region (or zone) name, such as us-east-1 or us-west-2

Examples

{ "actor": "aws.elb.WaitUntilHealthy",
"desc": "Wait until production-frontend has 16 hosts",
"options": {

"name": "production-frontend",
"count": 16,
"region": "us-west-2"

}
}

{ "actor": "aws.elb.WaitUntilHealthy",
"desc": "Wait until production-frontend has 85% of hosts in-service",
"options": {

"name": "production-frontend",
"count": "85%",
"region": "us-west-2"

}
}

Dry Mode

This actor performs the finding of the ELB as well as calculating its health at all times. The only difference
in dry mode is that it will not re-count the instances if the ELB is not healthy. A log message will be printed
indicating that the run is dry, and the actor will exit with success.

class kingpin.actors.aws.elb.SetCert(*args, **kwargs)
Find a server cert in IAM and use it for a specified ELB.

Options

Region (str) AWS region (or zone) name, like us-west-2

Name (str) Name of the ELB

Cert_name (str) Unique IAM certificate name, or ARN

Port (int) Port associated with the cert. (default: 443)

Example

{ "actor": "aws.elb.SetCert",
"desc": "Run SetCert",
"options": {

"cert_name": "new-cert",
"name": "some-elb",
"region": "us-west-2"

}
}

Dry run

Will check that ELB and Cert names are existent, and will also check that the credentials provided for AWS
have access to the new cert for ssl.

class kingpin.actors.aws.elb.RegisterInstance(*args, **kwargs)
Add an EC2 instance to a load balancer.

3.1. Amazon Web Services 13

Kingpin Documentation, Release 0.3.0

Options

Elb (str) Name of the ELB

Instances (str, list) Instance id, or list of ids. Default “self” id.

Region (str) AWS region (or zone) name, like us-west-2

Enable_zones (bool) add all available AZ to the elb. Default: True

Example

{ "actor": "aws.elb.RegisterInstance",
"desc": "Run RegisterInstance",
"options": {

"elb": "prod-loadbalancer",
"instances": "i-123456",
"region": "us-east-1",

}
}

Dry run

Will find the specified ELB, but not take any actions regarding instances.

class kingpin.actors.aws.elb.DeregisterInstance(*args, **kwargs)
Remove EC2 instance(s) from an ELB.

Options

Elb (str) Name of the ELB

Instances (str, list) Instance id, or list of ids

Region (str) AWS region (or zone) name, like us-west-2

Example

{ "actor": "aws.elb.DeregisterInstance",
"desc": "Run DeregisterInstance",
"options": {

"elb": "fill-in",
"instances": "fill-in",
"region": "fill-in"

}
}

Dry run

Will find the ELB but not take any actions regarding the instances.

3.1.4 Identity and Access Management (IAM)

kingpin.actors.aws.iam

class kingpin.actors.aws.iam.UploadCert(*args, **kwargs)
Uploads a new SSL Cert to AWS IAM.

Options

Private_key_path (str) Path to the private key.

Path (str) The AWS “path” for the server certificate. Default: “/”

14 Chapter 3. Actors

Kingpin Documentation, Release 0.3.0

Public_key_path (str) Path to the public key certificate.

Name (str) The name for the server certificate.

Cert_chain_path (str) Path to the certificate chain. Optional.

Example

{ "actor": "aws.iam.UploadCert",
"desc": "Upload a new cert",
"options": {

"name": "new-cert",
"private_key_path": "/cert.key",
"public_key_path": "/cert.pem",
"cert_chain_path": "/cert-chain.pem"

}
}

Dry run

Checks that the passed file paths are valid. In the future will also validate that the files are of correct format and
content.

class kingpin.actors.aws.iam.DeleteCert(*args, **kwargs)
Delete an existing SSL Cert in AWS IAM.

Options

Name (str) The name for the server certificate.

Example

{ "actor": "aws.iam.DeleteCert",
"desc": "Run DeleteCert",
"options": {

"name": "fill-in"
}

}

Dry run

Will find the cert by name or raise an exception if it’s not found.

3.1.5 Simple Queue Service (SQS)

kingpin.actors.aws.sqs

class kingpin.actors.aws.sqs.Create(*args, **kwargs)
Creates a new SQS queue with the specified name

Options

Name (str) The name of the queue to create

Region (str) AWS region (or zone) string, like ‘us-west-2’

Examples

{ "actor": "aws.sqs.Create",
"desc": "Create queue named async-tasks",
"options": {

"name": "async-tasks",

3.1. Amazon Web Services 15

Kingpin Documentation, Release 0.3.0

"region": "us-east-1",
}

}

Dry Mode

Will not create any queue, or even contact SQS. Will create a mock.Mock object and exit with success.

class kingpin.actors.aws.sqs.Delete(*args, **kwargs)
Deletes the SQS queues

Note: even if it‘s not empty

Options

Name (str) The name of the queue to destroy

Region (str) AWS region (or zone) string, like ‘us-west-2’

Idempotent (bool) Will not raise errors if no matching queues are found. (default: False)

Examples

{ "actor": "aws.sqs.Delete",
"desc": "Delete queue async-tasks",
"options": {

"name": "async-tasks",
"region": "us-east-1"

}
}

{ "actor": "aws.sqs.Delete",
"desc": "Delete queues with 1234 in the name",
"options": {

"name": "1234",
"region": "us-east-1"

}
}

Dry Mode

Will find the specified queue, but will have a noop regarding its deletion. Dry mode will fail if no queues are
found, and idempotent flag is set to False.

class kingpin.actors.aws.sqs.WaitUntilEmpty(*args, **kwargs)
Wait indefinitely until for SQS queues to become empty

This actor will loop infinitely as long as the count of messages in at least one queue is greater than zero. SQS
does not guarantee exact count, so this can return a stale value if the number of messages in the queue changes
rapidly.

Options

Name (str) The name or regex pattern of the queues to operate on

Region (str) AWS region (or zone) string, like ‘us-west-2’

Required (bool) Fail if no matching queues are found. (default: False)

Examples

{ "actor": "aws.sqs.WaitUntilEmpty",
"desc": "Wait until release-0025a* queues are empty",
"options": {

16 Chapter 3. Actors

Kingpin Documentation, Release 0.3.0

"name": "release-0025a",
"region": "us-east-1",
"required": true

}
}

Dry Mode

This actor performs the finding of the queue, but will pretend that the count is 0 and return success. Will fail
even in dry mode if required option is set to True and no queues with the name pattern are found.

3.2 Grouping Actors

3.2.1 Async

class kingpin.actors.group.Async(*args, **kwargs)
Execute several kingpin.actors.base.BaseActor objects asynchronously.

Groups together a series of Actors and executes them asynchronously - waiting until all of them finish before
returning.

Options

Concurrency Max number of concurrent executions. This will fire off N executions in parallel, and
continue with the remained as soon as the first execution is done. This is faster than creating N
Sync executions.

Acts An array of individual Actor definitions.

Contexts A list of dictionaries with contextual tokens to pass into the actors at instantiation time. If
the list has more than one element, then every actor defined in acts will be instantiated once
for each item in the contexts list.

Timeouts

Timeouts are disabled specifically in this actor. The sub-actors can still raise their own
kingpin.actors.exceptions.ActorTimedOut exceptions, but since the group actors run
an arbitrary number of sub actors, we have chosen to not have this actor specifically raise its own
kingpin.actors.exceptions.ActorTimedOut exception unless the user sets the timeout
setting.

Examples

Clone two arrays quickly.

{ "desc": "Clone two arrays",
"actor": "group.Async",
"options": {

"contexts": [
{ "ARRAY": "NewArray1" },
{ "ARRAY": "NewArray2" }

],
"acts": [

{ "desc": "do something",
"actor": "server_array.Clone",
"options": {

"source": "template",
"dest": "{ARRAY}",

3.2. Grouping Actors 17

Kingpin Documentation, Release 0.3.0

}
}

]
}

}

Dry Mode

Passes on the Dry mode setting to the sub-actors that are called.

Failure

In the event that one or more acts fail in this group, the entire group acts will return a failure to Kingpin.
Because multiple actors are executing all at the same time, the all of these actors will be allowed to finish before
the failure is returned.

3.2.2 Sync

class kingpin.actors.group.Sync(*args, **kwargs)
Execute a series of kingpin.actors.base.BaseActor synchronously.

Groups together a series of Actors and executes them synchronously in the order that they were defined.

Options

Acts An array of individual Actor definitions.

Contexts A list of dictionaries with contextual tokens to pass into the actors at instantiation time. If
the list has more than one element, then every actor defined in acts will be instantiated once
for each item in the contexts list.

Timeouts

Timeouts are disabled specifically in this actor. The sub-actors can still raise their own
kingpin.actors.exceptions.ActorTimedOut exceptions, but since the group actors run
an arbitrary number of sub actors, we have chosen to not have this actor specifically raise its own
kingpin.actors.exceptions.ActorTimedOut exception unless the user sets the timeout
setting.

Examples

Creates two arrays ... but sleeps 60 seconds between the two, then does not sleep at all after the last one:

{ "desc": "Clone, then sleep ... then clone, then sleep shorter...",
"actor": "group.Sync",
"options": {

"contexts": [
{ "ARRAY": "First", "SLEEP": "60", },
{ "ARRAY": "Second", "SLEEP": "0", }

],
"acts": [

{ "desc": "do something",
"actor": "server_array.Clone",
"options": {

"source": "template",
"dest": "{ARRAY}"

}
},
{ "desc": "sleep",
"actor": "misc.Sleep",

18 Chapter 3. Actors

Kingpin Documentation, Release 0.3.0

"options": {
"sleep": "{SLEEP}",

}
}

]
}

}

Dry Mode

Passes on the Dry mode setting to the acts that are called. Does not stop execution when one of the acts fails.
Instead Group actor will finish all acts with warnings, and raise an error at the end of execution.

This provides the user with an insight to all the errors that are possible to encounter, rather than abort and quit
on the first one.

Failure

In the event that an act fails, this actor will return the failure immediately. Because the acts are executed in-order
of definition, the failure will prevent any further acts from executing.

The behavior is different in the dry run (read above.)

3.3 Hipchat

3.3.1 Message

class kingpin.actors.hipchat.Message(*args, **kwargs)
Sends a message to a room in HipChat.

Options

Room (str) The string-name (or ID) of the room to send a message to

Message (str) Message to send

Examples

{ "actor": "hipchat.Message",
"desc": "Send a message!",
"options": {

"room": "Operations",
"message": "Beginning Deploy: v1.2"

}
}

Dry Mode

Fully supported – does not actually send messages to a room, but validates that the API credentials would have
access to send the message using the HipChat auth_test optional API argument.

3.3.2 Topic

class kingpin.actors.hipchat.Topic(*args, **kwargs)
Sets a HipChat room topic.

Options

•room - The string-name (or ID) of the room to set the topic of

3.3. Hipchat 19

Kingpin Documentation, Release 0.3.0

•topic - String of the topic to send

Examples

{ "actor": "hipchat.Topic",
"desc": "set the room topic",
"options": {

"room": "Operations",
"topic": "Latest Deployment: v1.2"

}
}

Dry Mode

Fully supported – does not actually set a room topic, but validates that the API credentials would have access to
set the topic of the room requested.

3.4 Librato

3.4.1 Annotation

class kingpin.actors.librato.Annotation(*args, **kwargs)
Librato Annotation Actor

Posts an Annotation to Librato.

Options

Title The title of the annotation

Description The description of the annotation

Name Name of the metric to annotate

Examples

{ "actor": "librato.Annotation",
"desc": "Mark our deployment",
"options": {

"title": "Deploy",
"description": "Version: 0001a",
"name": "production_releases"

}
}

Dry Mode

Currently does not actually do anything, just logs dry mode.

3.5 Miscellaneous

3.5.1 Macro

class kingpin.actors.misc.Macro(*args, **kwargs)
Parses a kingpin JSON file, instantiates and executes it.

Parse JSON

20 Chapter 3. Actors

Kingpin Documentation, Release 0.3.0

Kingpin JSON has 2 passes at its validity. JSON syntax must be valid, with the exception of a few useful
deviations allowed by demjson parser. Main one being the permission of inline comments via /* this */
syntax.

The second pass is validating the Schema. The JSON file will be validated for schema-conformity as one of the
first things that happens at load-time when the app starts up. If it fails, you will be notified immediately.

Lastly after JSON is established to be valid, all the tokens are replaced with their specified value. Any key/value
pair passed in the tokens option will be available inside of the JSON file as %KEY% and replaced with the
value at this time.

In a situation where nested Macro executions are invoked the tokens do not propagate from outter macro into
the inner. This allows to reuse token names, but forces the user to specify every token needed. Similarly, if
environment variables are used for token replacement in the main file, these tokens are not available in the
subsequent macros.

Pre-Instantiation

In an effort to prevent mid-run errors, we pre-instantiate all Actor objects all at once before we ever begin
executing code. This ensures that major typos or misconfigurations in the JSON will be caught early on.

Execution

misc.Macro actor simply calls the execute() method of the most-outter actor; be it a single action, or a
group actor.

Options

File String of local path to a JSON file.

Tokens Dictionary to search/replace within the file.

Examples

{ "desc": "Stage 1",
"actor": "misc.Macro",
"options": {

"file": "deployment/stage-1.json",
"tokens": {

"TIMEOUT": 360,
"RELEASE": "%RELEASE%"

}
}

}

Dry Mode

Fully supported – instantiates the actor inside of JSON with dry=True. The behavior of the consecutive actor is
unique to each; read their description for more information on dry mode.

3.5.2 Sleep

class kingpin.actors.misc.Sleep(desc, options, dry=False, warn_on_failure=False, condi-
tion=True, init_context={}, timeout=None)

Sleeps for an arbitrary number of seconds.

Options

Sleep Integer of seconds to sleep.

Examples

3.5. Miscellaneous 21

http://deron.meranda.us/python/demjson/

Kingpin Documentation, Release 0.3.0

{ "actor": "misc.Sleep",
"desc": "Sleep for 60 seconds",
"options": {

"sleep": 60
}

}

Dry Mode

Fully supported – does not actually sleep, just pretends to.

3.5.3 GenericHTTP

class kingpin.actors.misc.GenericHTTP(desc, options, dry=False, warn_on_failure=False, condi-
tion=True, init_context={}, timeout=None)

A very simple actor that allows GET/POST methods over HTTP.

Does a GET or a POST to a specified URL.

Options

Url Destination URL

Data Optional POST data as a dict

Username Optional for HTTPAuth.

Password Optional for HTTPAuth.

Examples

{ "actor": "misc.GenericHTTP",
"desc": "Make a simple web call",
"options": {

"url": "http://example.com/rest/api/v1?id=123&action=doit",
"username": "secret",
"password": "%SECRET_PASSWORD%"

}
}

Dry Mode

Will not do anything in dry mode except print a log statement.

3.6 PackageCloud

3.6.1 Documentation

kingpin.actors.packagecloud

The packagecloud actor allows you to perform maintenance operations on repositories hosted by packagecloud.io
using their API:

https://packagecloud.io/docs/api

Required Environment Variables

PACKAGECLOUD_ACCOUNT packagecloud account name, i.e.
https://packagecloud.io/PACKAGECLOUD_ACCOUNT

22 Chapter 3. Actors

https://docs.python.org/library/stdtypes.html#dict
https://packagecloud.io/docs/api
https://packagecloud.io/PACKAGECLOUD_ACCOUNT

Kingpin Documentation, Release 0.3.0

PACKAGECLOUD_TOKEN packagecloud API Token

3.6.2 Delete

class kingpin.actors.packagecloud.Delete(*args, **kwargs)
Deletes packages from a PackageCloud repo.

Searches for packages that match the packages_to_delete regex pattern and deletes them. If
number_to_keep is set, we always at least this number of versions of the given package intact in the repo.
Also if number_to_keep is set, the older versions of a package (based on upload time) packages will be
deleted first effectively leaving newer packages in the repo.

Options

Number_to_keep Keep at least this number of each package (defaults to 0)

Packages_to_delete Regex of packages to delete, e.g. pkg1|pkg2

Repo Which packagecloud repo to delete from

Examples

{ "desc": "packagecloud Delete example",
"actor": "packagecloud.Delete",
"options": {

"number_to_keep": 10,
"packages_to_delete": "deleteme",
"repo": "test"

}
}

3.6.3 DeleteByDate

class kingpin.actors.packagecloud.DeleteByDate(*args, **kwargs)
Deletes packages from a PackageCloud repo older than X.

Adds additional functionality to the Delete class with a older_than option. Only packages older than that
number of seconds will be deleted.

Options

Number_to_keep Keep at least this number of each package (defaults to 0)

Older_than Delete packages created before this number of seconds

Packages_to_delete Regex of packages to delete, e.g. pkg1|pkg2

Repo Which packagecloud repo to delete from

Examples

{ "desc": "packagecloud DeleteByDate example",
"actor": "packagecloud.DeleteByDate",
"options": {

"number_to_keep": 10,
"older_than": 600,
"packages_to_delete": "deleteme",
"repo": "test"

}
}

3.6. PackageCloud 23

Kingpin Documentation, Release 0.3.0

3.6.4 WaitForPackage

class kingpin.actors.packagecloud.WaitForPackage(*args, **kwargs)
Searches for a package that matches name and version until found or a timeout occurs.

Options

Name Name of the package to search for as a regex

Version Version of the package to search for as a regex

Repo Which packagecloud repo to delete from

Sleep Number of seconds to sleep for between each search

Examples

{ "desc": "packagecloud WaitForPackage example",
"actor": "packagecloud.WaitForPackage",
"options": {

"name": "findme",
"version": "0.1",
"repo": "test",
"sleep": 10,

}
}

3.7 Pingdom

3.7.1 Pause

class kingpin.actors.pingdom.Pause(*args, **kwargs)
Start Pingdom Maintenance.

Pause a particular “check” on Pingdom.

Options

Name (Str) Name of the check

Example

{ "actor": "pingdom.Pause",
"desc": "Run Pause",
"options": {

"name": "fill-in"
}

}

Dry run

Will assert that the check name exists, but not take any action on it.

3.7.2 Unpause

class kingpin.actors.pingdom.Unpause(*args, **kwargs)
Stop Pingdom Maintenance.

Unpause a particular “check” on Pingdom.

24 Chapter 3. Actors

Kingpin Documentation, Release 0.3.0

Options

Name (Str) Name of the check

Example

{ "actor": "pingdom.Unpause",
"desc": "Run unpause",
"options": {

"name": "fill-in"
}

}

Dry run

Will assert that the check name exists, but not take any action on it.

3.8 RightScale

3.8.1 Documentation

kingpin.actors.rightscale.base

The RightScale Actors allow you to interact with resources inside your Rightscale account. These actors all support
dry runs properly, but each actor has its own caveats with dry=True. Please read the instructions below for using
each actor.

Required Environment Variables

RIGHTSCALE_TOKEN RightScale API Refresh Token (from the Account Settings/API Credentials
page)

RIGHTSCALE_ENDPOINT Your account-specific API Endpoint (defaults to
https://my.rightscale.com)

exception kingpin.actors.rightscale.base.ArrayNotFound
Raised when a ServerArray could not be found.

exception kingpin.actors.rightscale.base.ArrayAlreadyExists
Raised when a ServerArray already exists by a given name.

3.8.2 Deployment

kingpin.actors.rightscale.deployment

class kingpin.actors.rightscale.deployment.Create(*args, **kwargs)
Creates a RightScale deployment.

Options match the documentation in RightScale: http://reference.rightscale.com/api1.5/resources/ResourceDeployments.html

Options

Name The name of the deployment to be created.

Description The description of the deployment to be created. (optional)

Server_tag_scope The routing scope for tags for servers in the deployment. Can be ‘deployment’
or ‘account’ (optional, default: deployment)

3.8. RightScale 25

https://my.rightscale.com
http://reference.rightscale.com/api1.5/resources/ResourceDeployments.html

Kingpin Documentation, Release 0.3.0

class kingpin.actors.rightscale.deployment.Destroy(*args, **kwargs)
Deletes a RightScale deployment.

Options match the documentation in RightScale: http://reference.rightscale.com/api1.5/resources/ResourceDeployments.html

Options

Name The name of the deployment to be deleted.

3.8.3 Alert Specs

kingpin.actors.rightscale.alerts

class kingpin.actors.rightscale.alerts.Create(*args, **kwargs)
Create a RightScale Alert Spec

Options match the documentation in RightScale: http://reference.rightscale.com/api1.5/resources/ResourceAlertSpecs.html#create

Options

Array The name of the Server or ServerArray to create the AlertSpec on.

Strict_array Whether or not to fail if the Server/ServerArray does not exist. (default: False)

Condition The condition (operator) in the condition sentence. (>, >=, <, <=, ==, !=)

Description The description of the AlertSpec. (optional)

Duration The duration in minutes of the condition sentence. (^d+$)

Escalation_name Escalate to the named alert escalation when the alert is triggered. (optional)

File The RRD path/file_name of the condition sentence.

Name The name of the AlertSpec.

Threshold The threshold of the condition sentence.

Variable The RRD variable of the condition sentence

Vote_tag Should correspond to a vote tag on a ServerArray if vote to grow or shrink.

Vote_type Vote to grow or shrink a ServerArray when the alert is triggered. Must either escalate or
vote. (grow or shrink)

Examples

Create a high network activity alert on my-array:

{ "desc": "Create high network rx alert",
"actor": "rightscale.alerts.Create",
"options": {

"array": "my-array",
"strict_array": true,
"condition": ">",
"description": "Alert if amount of network data received is high",
"duration": 180,
"escalation_name": "Email Engineering",
"file": "interface/if_octets-eth0",
"name": "high network rx activity",
"threshold": "50000000",
"variable": "rx"

}
}

26 Chapter 3. Actors

http://reference.rightscale.com/api1.5/resources/ResourceDeployments.html
http://reference.rightscale.com/api1.5/resources/ResourceAlertSpecs.html#create

Kingpin Documentation, Release 0.3.0

Dry Mode

In Dry mode this actor does validate that the array array exists. If it does not, a
kingpin.actors.rightscale.api.ServerArrayException is thrown. Once that has been
validated, the dry mode execution simply logs the Alert Spec that it would have created.

Example dry output:

TODO: Fill this in

class kingpin.actors.rightscale.alerts.Destroy(*args, **kwargs)
Destroy existing RightScale Alert Specs

This actor searches RightScale for any Alert Specs that match the name and array that you supplied, then
deletes all of them. RightScale lets you have multiple alert specs with the same name, so if this actor finds
multiple specs, it will delete them all.

Options

Array The name of the Server or ServerArray to delete the AlertSpec from.

Name The name of the AlertSpec.

Examples

Destroy a high network activity alert on my-array:

{ "desc": "Destroy high network rx alert",
"actor": "rightscale.alerts.Destroy",
"options": {

"array": "my-array",
"name": "high network rx activity",

}
}

Dry Mode

In Dry mode this actor does validate that the array array exists, and that the AlertSpec exists on that array so
that it can be deleted. A RecoverableActorFailure error is thrown if it does not exist.

Example dry output:

14:31:49 INFO Rehearsing... Break a leg!
14:31:49 INFO [DRY: Kingpin] Preparing actors from delete.json
14:31:53 INFO [DRY: Destroy high network rx alert] Found
my-array (/api/server_arrays/329142003) to delete alert spec from

14:31:54 INFO [DRY: Destroy high network rx alert] Would have
deleted the alert spec "high network rx activity" on my-array

3.8.4 Server Arrays

kingpin.actors.rightscale.server_array

class kingpin.actors.rightscale.server_array.Clone(*args, **kwargs)
Clones a RightScale Server Array.

Clones a ServerArray in RightScale and renames it to the newly supplied name. By default, this actor is ex-
tremely strict about validating that the source array already exists, and that the dest array does not yet exist.
This behavior can be overridden though if your Kingpin script creates the source, or destroys an existing
dest ServerArray sometime before this actor executes.

3.8. RightScale 27

Kingpin Documentation, Release 0.3.0

Options

Source The name of the ServerArray to clone

Strict_source Whether or not to fail if the source ServerArray does not exist. (default: True)

Dest The new name for your cloned ServerArray

Strict_dest Whether or not to fail if the destination ServerArray already exists. (default: True)

Examples

Clone my-template-array to my-new-array:

{ "desc": "Clone my array",
"actor": "rightscale.server_array.Clone",
"options": {

"source": "my-template-array",
"dest": "my-new-array"

}
}

Clone an array that was created sometime earlier in the Kingpin JSON, and thus does not exist yet during the
dry run:

{ "desc": "Clone that array we created earlier",
"actor": "rightscale.server_array.Clone",
"options": {

"source": "my-template-array",
"strict_source": false,
"dest": "my-new-array"

}
}

Clone an array into a destination name that was destroyed sometime earlier in the Kingpin JSON:

{ "desc": "Clone that array we created earlier",
"actor": "rightscale.server_array.Clone",
"options": {

"source": "my-template-array",
"dest": "my-new-array",
"strict_dest": false,

}
}

Dry Mode

In Dry mode this actor does validate that the source array exists. If it does not, a
kingpin.actors.rightscale.api.ServerArrayException is thrown. Once that has been val-
idated, the dry mode execution pretends to copy the array by creating a mocked cloned array resource. This
mocked resource is then operated on during the rest of the execution of the actor, guaranteeing that no live
resources are modified.

Example dry output:

[Copy Test (DRY Mode)] Verifying that array "temp" exists
[Copy Test (DRY Mode)] Verifying that array "new" does not exist
[Copy Test (DRY Mode)] Cloning array "temp"
[Copy Test (DRY Mode)] Renaming array "<mocked clone of temp>" to "new"

class kingpin.actors.rightscale.server_array.Update(*args, **kwargs)
Update ServerArray Settings

28 Chapter 3. Actors

Kingpin Documentation, Release 0.3.0

Updates an existing ServerArray in RightScale with the supplied parameters. Can update any parameter that is
described in the RightScale API docs here:

Parameters are passed into the actor in the form of a dictionary, and are then converted into the RightScale
format. See below for examples.

Options

Array (str) The name of the ServerArray to update

Exact (bool) whether or not to search for the exact array name. (default: true)

Params (dict) Dictionary of parameters to update

Inputs (dict) Dictionary of next-instance server arryay inputs to update

Examples

{ "desc": "Update my array",
"actor": "rightscale.server_array.Update",
"options": {

"array": "my-new-array",
"params": {
"elasticity_params": {
"bounds": {
"min_count": 4

},
"schedule": [

{"day": "Sunday", "max_count": 2,
"min_count": 1, "time": "07:00" },

{"day": "Sunday", "max_count": 2,
"min_count": 2, "time": "09:00" }

]
},
"name": "my-really-new-name"

}
}

}

{ "desc": "Update my array inputs",
"actor": "rightscale.server_array.Update",
"options": {

"array": "my-new-array",
"inputs": {
"ELB_NAME": "text:foobar"

}
}

}

Dry Mode

In Dry mode this actor does search for the array, but allows it to be missing because its highly likely that the
array does not exist yet. If the array does not exist, a mocked array object is created for the rest of the execution.

During the rest of the execution, the code bypasses making any real changes and just tells you what changes it
would have made.

This means that the dry mode cannot validate that the supplied inputs will work.

Example dry output:

[Update Test (DRY Mode)] Verifying that array "new" exists
[Update Test (DRY Mode)] Array "new" not found -- creating a mock.

3.8. RightScale 29

Kingpin Documentation, Release 0.3.0

[Update Test (DRY Mode)] Would have updated "<mocked array new>" with
params: {'server_array[name]': 'my-really-new-name',

'server_array[elasticity_params][bounds][min_count]': '4'}

class kingpin.actors.rightscale.server_array.UpdateNextInstance(*args, **kwargs)
Update the Next Instance parameters for a Server Array

Updates an existing ServerArray in RightScale with the supplied parameters. Can update any parameter that is
described in the RightScale ResourceInstances docs.

Note about the image_href parameter

If you pass in the string default to the image_href key in your params dictionary, we will search and find
the default image that your ServerArray’s Multi Cloud Image refers to. This helper is useful if you update your
ServerArrays to use custom AMIs, and then occasionally want to go back to using a stock AMI. For example,
if you boot up your instances occasionally off a stock AMI, customize the host, and then bake that host into a
custom AMI.

Parameters are passed into the actor in the form of a dictionary, and are then converted into the RightScale
format. See below for examples.

Options

Array (str) The name of the ServerArray to update

Exact (bool) whether or not to search for the exact array name. (default: true)

Params (dict) Dictionary of parameters to update

Examples

{ "desc": "Update my array",
"actor": "rightscale.server_array.UpdateNextInstance",
"options": {

"array": "my-new-array",
"params": {
"associate_public_ip_address": true,
"image_href": "/image/href/123",

}
}

}

{ "desc": "Reset the AMI image to the MCI default",
"actor": "rightscale.server_array.UpdateNextInstance",
"options": {

"array": "my-new-array",
"params": {
"image_href": "default",

}
}

}

Dry Mode

In Dry mode this actor does search for the array, but allows it to be missing because its highly likely that the
array does not exist yet. If the array does not exist, a mocked array object is created for the rest of the execution.

During the rest of the execution, the code bypasses making any real changes and just tells you what changes it
would have made.

This means that the dry mode cannot validate that the supplied params will work.

Example dry output:

30 Chapter 3. Actors

http://reference.rightscale.com/api1.5/resources/ResourceInstances.html#update

Kingpin Documentation, Release 0.3.0

[Update my array (DRY Mode)] Verifying that array "new" exists
[Update my array (DRY Mode)] Array "new" not found -- creating a mock.
[Update my array (DRY Mode)] Would have updated "<mocked array new>"
with params: {'server_array[associate_public_ip_address]': true,

'server_array[image_href]': '/image/href/'}

class kingpin.actors.rightscale.server_array.Terminate(*args, **kwargs)
Terminate all instances in a ServerArray

Terminates all instances for a ServerArray in RightScale marking the array disabled.

Options

Array (str) The name of the ServerArray to destroy

Exact (bool) Whether or not to search for the exact array name. (default: true)

Strict (bool) Whether or not to fail if the ServerArray does not exist. (default: true)

Examples

{ "desc": "Terminate my array",
"actor": "rightscale.server_array.Terminate",
"options": {

"array": "my-array"
}

}

{ "desc": "Terminate many arrays",
"actor": "rightscale.server_array.Terminate",
"options": {

"array": "array-prefix",
"exact": false,

}
}

Dry Mode

Dry mode still validates that the server array you want to terminate is actually gone. If you want to bypass this
check, then set the warn_on_failure flag for the actor.

class kingpin.actors.rightscale.server_array.Destroy(*args, **kwargs)
Destroy a ServerArray in RightScale

Destroys a ServerArray in RightScale by first invoking the Terminate actor, and then deleting the array as soon
as all of the running instances have been terminated.

Options

Array (str) The name of the ServerArray to destroy

Exact (bool) Whether or not to search for the exact array name. (default: true)

Strict (bool) Whether or not to fail if the ServerArray does not exist. (default: true)

Examples

{ "desc": "Destroy my array",
"actor": "rightscale.server_array.Destroy",
"options": {

"array": "my-array"
}

}

3.8. RightScale 31

Kingpin Documentation, Release 0.3.0

{ "desc": "Destroy many arrays",
"actor": "rightscale.server_array.Destroy",
"options": {

"array": "array-prefix",
"exact": false,

}
}

Dry Mode

In Dry mode this actor does search for the array, but allows it to be missing because its highly likely that the
array does not exist yet. If the array does not exist, a mocked array object is created for the rest of the execution.

During the rest of the execution, the code bypasses making any real changes and just tells you what changes it
would have made.

Example dry output:

[Destroy Test (DRY Mode)] Beginning
[Destroy Test (DRY Mode)] Terminating array before destroying it.
[Destroy Test (terminate) (DRY Mode)] Array "my-array" not found --
creating a mock.
[Destroy Test (terminate) (DRY Mode)] Disabling Array "my-array"
[Destroy Test (terminate) (DRY Mode)] Would have terminated all array
"<mocked array my-array>" instances.
[Destroy Test (terminate) (DRY Mode)] Pretending that array <mocked
array my-array> instances are terminated.
[Destroy Test (DRY Mode)] Pretending to destroy array "<mocked array
my-array>"
[Destroy Test (DRY Mode)] Finished successfully. Result: True

class kingpin.actors.rightscale.server_array.Launch(*args, **kwargs)
Launch instances in a ServerArray

Launches instances in an existing ServerArray and waits until that array has become healthy before returning.
Healthy means that the array has at least the user-specified count or min_count number of instances running
as defined by the array definition in RightScale.

Options

Array (str) The name of the ServerArray to launch

Count (str, int) Optional number of instance to launch. Defaults to min_count of the array.

Enable (bool) Should the autoscaling of the array be enabled? Settings this to false, or omitting
the parameter will not disable an enabled array.

Exact (bool) Whether or not to search for the exact array name. (default: true)

Examples

{ "desc": "Enable array and launch it",
"actor": "rightscale.server_array.Launch",
"options": {

"array": "my-array",
"enable": true

}
}

{ "desc": "Enable arrays starting with my-array and launch them",
"actor": "rightscale.server_array.Launch",
"options": {

32 Chapter 3. Actors

https://docs.python.org/library/array.html#module-array

Kingpin Documentation, Release 0.3.0

"array": "my-array",
"enable": true,
"exact": false

}
}

{ "desc": "Enable array and launch 1 instance",
"actor": "rightscale.server_array.Launch",
"options": {

"array": "my-array",
"count": 1

}
}

Dry Mode

In Dry mode this actor does search for the array, but allows it to be missing because its highly likely that the
array does not exist yet. If the array does not exist, a mocked array object is created for the rest of the execution.

During the rest of the execution, the code bypasses making any real changes and just tells you what changes it
would have made.

Example dry output:

[Launch Array Test #0 (DRY Mode)] Verifying that array "my-array" exists
[Launch Array Test #0 (DRY Mode)] Array "my-array" not found -- creating

a mock.
[Launch Array Test #0 (DRY Mode)] Enabling Array "my-array"
[Launch Array Test #0 (DRY Mode)] Launching Array "my-array" instances
[Launch Array Test #0 (DRY Mode)] Would have launched instances of array

<MagicMock name='my-array.self.show().soul.__getitem__()'
id='4420453200'>

[Launch Array Test #0 (DRY Mode)] Pretending that array <MagicMock
name='my-array.self.show().soul.__getitem__()' id='4420453200'>
instances are launched.

class kingpin.actors.rightscale.server_array.Execute(*args, **kwargs)
Executes a RightScale script/recipe on a ServerArray

Executes a RightScript or Recipe on a set of hosts in a ServerArray in RightScale using individual calls to the
live running instances. These can be found in your RightScale account under Design -> RightScript or Design
-> Cookbooks

The RightScale API offers a multi_run_executable method that can be used to run a single script on all servers
in an array – but unfortunately this API method provides no way to monitor the progress of the individual jobs
on the hosts. Furthermore, the method often executes on recently terminated or terminating hosts, which throws
false-negative error results.

Our actor explicitly retrieves a list of the operational hosts in an array and kicks off individual execution tasks
for every host. It then tracks the execution of those tasks from start to finish and returns the results.

Options

Array (str) The name of the ServerArray to operate on

Script (str) The name of the RightScript or Recipe to execute

Expected_runtime (str, int) Expected number of seconds to execute. (default: 5)

Concurrency Max number of concurrent executions. This will fire off N executions in parallel, and
continue with the remained as soon as the first execution is done. This is faster than creating N

3.8. RightScale 33

Kingpin Documentation, Release 0.3.0

Sync executions. Note: When applied to multiple (M) arrays cumulative concurrency accross
all arrays will remain at N. It will not be M x N.

Inputs (dict) Dictionary of Key/Value pairs to use as inputs for the script

Exact (str) Boolean whether or not to search for the exact array name. (default: true)

Examples

{ "desc":" Execute script on my-array",
"actor": "rightscale.server_array.Execute",
"options": {

"array": "my-array",
"script": "connect to elb",
"expected_runtime": 3,
"inputs": {

"ELB_NAME": "text:my-elb"
}

}
}

Dry Mode

In Dry mode this actor does search for the array, but allows it to be missing because its highly likely that the
array does not exist yet. If the array does not exist, a mocked array object is created for the rest of the execution.

During the rest of the execution, the code bypasses making any real changes and just tells you what changes it
would have made.

Example dry output:

[Destroy Test (DRY Mode)] Verifying that array "my-array" exists
[Execute Test (DRY Mode)]

kingpin.actors.rightscale.server_array.Execute Initialized
[Execute Test (DRY Mode)] Beginning execution
[Execute Test (DRY Mode)] Verifying that array "my-array" exists
[Execute Test (DRY Mode)] Would have executed "Connect instance to ELB"

with inputs "{'inputs[ELB_NAME]': 'text:my-elb'}" on "my-array".
[Execute Test (DRY Mode)] Returning result: True

3.8.5 Multi Cloud Images

kingpin.actors.rightscale.mci

class kingpin.actors.rightscale.mci.Create(*args, **kwargs)
Creates a RightScale Multi Cloud Image.

Options match the documentation in RightScale: http://reference.rightscale.com/api1.5/resources/ResourceMultiCloudImages.html

Options

Name The name of the MCI to be created.

Description The description of the MCI to be created. (optional)

Images A list of dicts that each describe a single cloud and the image in that cloud to launch. See
below for details.

Image Definitions

Each cloud image definition is a dictionary that takes a few keys.

34 Chapter 3. Actors

https://docs.python.org/library/array.html#module-array
http://reference.rightscale.com/api1.5/resources/ResourceMultiCloudImages.html

Kingpin Documentation, Release 0.3.0

Cloud The name of the cloud as found in RightScale. We use the cloud ‘Name’
which can be found in your Settings -> Account Settings -> Clouds ->
insert_cloud_here page. For example AWS us-west-2.

Image The cloud-specific Image UID. For example ami-a1234abc.

Instance_type The default instance type to launch when this AMI is launched. For example,
m1.small. (optional)

User_data The custom user data to pass to the instance on-bootup. (optional)

Examples

{ "actor": "rightscale.mci.Create",
"desc": "Create an MCI",
"options": {

"name": "Ubuntu i386 14.04",
"description": "this is our test mci",
"images": [
{

"cloud": "EC2 us-west-2",
"image": "ami-e29774d1",
"instance_type": "m1.small",
"user_data": "cd /bin/bash"

},
{

"cloud": "EC2 us-west-1",
"image": "ami-b58142f1",
"instance_type": "m1.small",
"user_data": "cd /bin/bash"

}
]

}
}

class kingpin.actors.rightscale.mci.Destroy(*args, **kwargs)
Deletes a RightScale MCI.

Options match the documentation in RightScale: http://reference.rightscale.com/api1.5/resources/ResourceMultiCloudImages.html

Options

Name The name of the multi cloud image to be deleted.

Examples

{ "actor": "rightscale.mci.Destroy",
"desc": "Create an MCI",
"options": {

"name": "Ubuntu i386 14.04",
}

}

3.9 Rollbar

3.9.1 Deploy

class kingpin.actors.rollbar.Deploy(*args, **kwargs)
Posts a Deploy message to Rollbar.

3.9. Rollbar 35

http://reference.rightscale.com/api1.5/resources/ResourceMultiCloudImages.html

Kingpin Documentation, Release 0.3.0

https://rollbar.com/docs/deploys_other/

API Token

You must use an API token created in your Project Access Tokens account settings section. This token should
have post_server_item permissions for the actual deploy, and read permissions for the Dry run.

Options

Environment The environment to deploy to

Revision The deployment revision

Local_username The user who initiated the deploy

Rollbar_username (Optional) The Rollbar Username to assign the deploy to

Comment (Optional) Comment describing the deploy

Examples

{ "actor": "rollbar.Deploy",
"desc": "update rollbar deploy",
"options": {

"environment": "Prod",
"revision": "%DEPLOY%",
"local_username": "Kingpin",
"rollbar_username": "Kingpin",
"comment": "some comment %DEPLOY%"

}
}

Dry Mode

Accesses the Rollbar API and validates that the token can access your project.

3.10 Slack

3.10.1 Message

class kingpin.actors.slack.Message(*args, **kwargs)
Sends a message to a channel in Slack.

Options

Channel The string-name of the channel to send a message to

Message String of the message to send

Examples

{ "desc": "Let the Engineers know things are happening",
"actor": "slack.Message",
"options": {

"channel": "#operations",
"message": "Beginning Deploy: %VER%"

}
}

Dry Mode

36 Chapter 3. Actors

https://rollbar.com/docs/deploys_other/

Kingpin Documentation, Release 0.3.0

Fully supported – does not actually send messages to a room, but validates that the API credentials would have
access to send the message using the Slack auth.test API method.

3.10. Slack 37

Kingpin Documentation, Release 0.3.0

38 Chapter 3. Actors

CHAPTER 4

Security

4.1 URLLIB3 Warnings Disabled

Recently urllib3 library has started issuing InsecurePlatformWarning. We suppress urllib3 warnings to limit log output
to Kingping’s own.

39

https://urllib3.readthedocs.org/en/latest/security.html#insecureplatformwarning

Kingpin Documentation, Release 0.3.0

40 Chapter 4. Security

CHAPTER 5

Development

5.1 Setting up your Environment

5.1.1 Create your VirtualEnvironment

$ virtualenv .venv --no-site-packages
New python executable in .venv/bin/python
Installing setuptools, pip...done.
$ source .venv/bin/activate

5.1.2 Check out the code

(.venv) $ git clone git@github.com:Nextdoor/kingpin
Cloning into 'kingpin'...
Warning: Permanently added 'github.com,192.30.252.128' (RSA) to the list of known hosts.
remote: Counting objects: 1831, done.
remote: irangedCompressing objects: 100% (17/17), done.
remote: Total 1831 (delta 7), reused 0 (delta 0)
Receiving objects: 100% (1831/1831), 287.68 KiB, done.
Resolving deltas: 100% (1333/1333), done.

5.1.3 Install the test-specific dependencies

(.venv) $ pip install -r kingpin/requirements.test.txt
...
(.venv) $ cd kingpin
(.venv) $ python setup.py test
...

5.2 Testing

5.2.1 Unit Tests

The code is 100% unit test coverage complete, and no pull-requests will be accepted that do not maintain this level of
coverage. That said, it’s possible (likely) that we have not covered every possible scenario in our unit tests that could
cause failures. We will strive to fill out every reasonable failure scenario.

41

Kingpin Documentation, Release 0.3.0

5.2.2 Integration Tests

Because it’s hard to predict cloud failures, we provide integration tests for most of our modules. These integration
tests actually go off and execute real operations in your accounts, and rely on particular environments being setup in
order to run. These tests are great to run though to validate that your credentials are all correct.

Specific integration test notes are below, describing what is required to run each set of tests.

Executing the tests

HIPCHAT_TOKEN=<xxx> RIGHTSCALE_TOKEN=<xxx> make integration

PYFLAKES_NODOCTEST=True python setup.py integration pep8 pyflakes
running integration
integration_01_clone_dry (integration_server_array.IntegrationServerArray) ... ok
integration_02a_clone (integration_server_array.IntegrationServerArray) ... ok
integration_02b_clone_with_duplicate_array (integration_server_array.IntegrationServerArray) ... ok
integration_03a_update_params (integration_server_array.IntegrationServerArray) ... ok
integration_03b_update_with_invalid_params (integration_server_array.IntegrationServerArray) ... ok
integration_04_launch (integration_server_array.IntegrationServerArray) ... ok
integration_05_destroy (integration_server_array.IntegrationServerArray) ... ok
integration_test_execute_real (integration_hipchat.IntegrationHipchatMessage) ... ok
integration_test_execute_with_invalid_creds (integration_hipchat.IntegrationHipchatMessage) ... ok
integration_test_init_without_environment_creds (integration_hipchat.IntegrationHipchatMessage) ... ok

Name Stmts Miss Cover Missing
--
kingpin 0 0 100%
kingpin.actors 0 0 100%
kingpin.actors.base 62 5 92% 90, 95, 146, 215-216
kingpin.actors.exceptions 4 0 100%
kingpin.actors.hipchat 58 5 91% 59, 111-118
kingpin.actors.misc 17 5 71% 47-49, 57-62
kingpin.actors.rightscale 0 0 100%
kingpin.actors.rightscale.api 137 46 66% 153-164, 251-258, 343-346, 381-382, 422-445, 466-501
kingpin.actors.rightscale.base 31 3 90% 36, 49, 79
kingpin.actors.rightscale.server_array 195 49 75% 59-62, 68-72, 79, 174, 190-196, 213-216, 249-250, 253-256, 278-281, 303-305, 377-380, 437-440, 501-505, 513-547
kingpin.utils 67 30 55% 57-69, 78, 93-120, 192-202
--
TOTAL 571 143 75%
--
Ran 10 tests in 880.274s

OK
running pep8
running pyflakes

kingpin.actor.rightscale.server_array

These tests clone a ServerArray, modify it, launch it, and destroy it. They rely on an existing ServerArray template
being available and launchable in your environment. For simple testing, I recommend just using a standard RightScale
ServerTemplate.

Required RightScale Resources

• ServerArray: kingpin-integration-testing Any ServerArray that launches a server in your environment.

• RightScript: kingpin-integration-testing-script Should be a script that sleeps for a specified amount of time.
Requires ‘‘SLEEP‘‘ input

42 Chapter 5. Development

Kingpin Documentation, Release 0.3.0

5.3 Class/Object Architecture

kingpin.rb
|
+-- deployment.Deployer

| Executes a deployment based on the supplied DSL.
|
+-- actors.rightscale
| | RightScale Cloud Management Actor
| |
| +-- server_array
| +-- Clone
| +-- Destroy
| +-- Execute
| +-- Launch
| +-- Update
|
+-- actors.aws
| | Amazon Web Services Actor
| |
| +-- elb
| | +-- WaitUntilHealthy
| |
| +-- sqs
| +-- Create
| +-- Delete
| +-- WaitUntilEmpty
|
+-- actors.email
| | Email Actor
|
+-- actors.hipchat
| | Hipchat Actor
| |
| +-- Message
|
+-- actors.librato

| Librato Metric Actor
|
+-- Annotation

5.4 Setup

Create a dedicated Python virtual environment and source it
virtualenv --no-site-packages .venv
unset PYTHONPATH
source .venv/bin/activate

Install the dependencies
make build

Run the tests
make test

5.3. Class/Object Architecture 43

Kingpin Documentation, Release 0.3.0

5.5 Actor Design

Kingpin Actors are self-contained python classes that execute operations asynchronously. Actors should follow a
consistent structure (described below) and be written to be as fault tolerant as possible.

5.5.1 Hello World Actor Example

This is the basic structure for an actor class.

import os

from tornado import gen

from kingpin.actors import base
from kingpin.actors import exceptions

All actors must have an __author__ tag. This is used actively
by the Kingpin code, do not forget this!
__author__ = 'Billy Joe Armstrong <american_idiot@broadway.com>'

Perhaps you need an API token?
TOKEN = os.getenv('HELLO_WORLD_TOKEN', None)

class HelloWorld(base.BaseActor):
Create an all_options dictionary that contains all of
the required and optional options that can be passed into
this actor.
all_options = {

'name': (str, None, 'Your name'),
'world': (str, None, 'World we\'re saying hello to!'),

}

Optionally, if you need to do any instantiation-level, non-blocking
validation checks (for example, looking for an API token) you can do
them in the __init__. Do *not* put blocking code in here.
def __init__(self, *args, **kwargs):

super(HelloWorld, self).__init__(*args, **kwargs)
if not TOKEN:

raise exceptions.InvalidCredentials(
'Missing the "HELLO_WORLD_TOKEN" environment variable.')

Initialize our hello world sender object. This is non-blocking.
self._hello_world = my.HelloWorldSender(token=TOKEN)

Its nice to wrap some of your logic into separate methods. This
method handles sending the message, or pretends to send the
message if we're in a dry run.
@gen.coroutine
def _send_message(self, name, world):

Attempt to log into the API to sanity check our credentials
try:

yield self._hello_world.login()
except Shoplifter:

msg = 'Could not log into the world!'
raise exceptions.UnrecoverableActorFailure(msg)

Make sure to support DRY mode all the time!

44 Chapter 5. Development

Kingpin Documentation, Release 0.3.0

if self._dry:
self.log.info('Would have said Hi to %s' % world)
raise gen.Return()

Finally, send the message!
try:

res = yield self._hello_world.send(
from=name, to=world)

except WalkingAlone as e:
Lets say that this error is completely un-handleable exception,
there's no one to say hello to!
self.log.critical('Some extra information about this error...')

Now, raise an exception that is will stop execution of Kingpin,
regardless of the warn_on_failure setting.
raise exceptions.UnrecoverableActorException('Oh my: %s' % e)

Return the value back to the execute method
raise gen.Return(res)

The meat of the work happens in the _execute() method. This method
is called by the BaseActor.execute() method. Your method must be
wrapped in a gen.Coroutine wrapper. Note, the _execute() method takes
no arguments, all arguments for the acter were passed in to the
__init__() method.
@gen.coroutine
def _execute(self):

self.log.debug('Warming up the HelloWorld Actor')

Fire off an async request to a our private method for sending
hello world messages. Get the response and evaluate
res = yield self._send_message(

self.option('name'), self.option('world'))

Got a response. Did our message really go through though?
if not res:

The world refuses to hear our message... A shame, really, but
not entirely critical.
self.log.error('We failed to get our message out ... just '

'letting you know!')
raise exceptions.RecoverableActorFailure(

'A shame, but I suppose they can listen to what they want')

We've been heard!
self.log.info('%s people have heard our message!' % res)

Indicate to Tornado that we're done with our execution.
raise gen.Return()

5.5.2 Required Options

The following options are baked into our BaseActor model and must be supported by any actor that subclasses it. They
are fundamentally critical to the behavior of Kingpin, and should not be bypassed or ignored.

5.5. Actor Design 45

Kingpin Documentation, Release 0.3.0

desc

A string describing the stage or action thats occuring. Meant to be human readable and useful for logging. You do not
need to do anything intentinally to support this option (it’s handled in kingpin.actors.base.BaseActor).

dry

All Actors must support a dry run flag. The codepath thats executed when _execute() is yielded should be as
wet as possible without actually making any changes. For example, if you have an actor that checks the state of an
Amazon ELB (hint see aws.elb.WaitUntilHealthy), you would want the actor to actually search Amazons API for the
ELB, actually check the number of instances that are healthy in the ELB, and then fake a return value so that the rest
of the script can be tested.

options

Your actor can take in custom options (ELB name, Route53 DNS entry name, etc) through a dictionary named
options thats passed in to every actor and stored as self._options. The contents of this dictionary are en-
tirely up to you.

warn_on_failure (optional)

If the user sets warn_on_failure=True, any raised exceptions that subclass
kingpin.actors.exceptions.RecoverableActorFailure will be swallowed up and warned about,
but will not cause the execution of the kingpin script to end.

Exceptions that subclass kingpin.actors.exceptions.UnrecoverableActorFailure (or uncaught
third party exceptions) will cause the actor to fail and the script to be aborted no matter what!

5.5.3 Required Methods

_execute() method

Your actor can execute any code you would like in the _execute() method. This method should make sure that it’s
a tornado-style generator (thus, can be yielded), and that it never calls any blocking operations.

Actors must not:

• Call a blocking operation ever

• Call an async operation from inside the init() method

• Bypass normal logging methods

• return a result (should raise gen.Return(...))

Actors must:

• Subclass kingpin.actors.base.BaseActor

• Include __author__ attribute thats a single string with the owners listed in it.

• Implement a *_execute()* method

• Handle as many possible exceptions of third-party libraries as possible

• Return None when the actor has succeeded.

46 Chapter 5. Development

Kingpin Documentation, Release 0.3.0

Actors can:

• Raise kingpin.actors.exceptions.UnrecoverableActorFailure. This is considered an unrecoverable exception and
no Kingpin will not execute any further actors when this happens.

• Raise kingpin.actors.exceptions.RecoverableActorFailure. This is considered an error in execution, but is either
expected or at least cleanly handled in the code. It allows the user to specify warn_on_failure=True,
where they can then continue on in the script even if an actor fails.

Super simple example Actor _execute() method

@gen.coroutine
def _execute(self):

self.log.info('Making that web call')
res = yield self._post_web_call(URL)
raise gen.Return(res)

5.5.4 Helper Methods/Objects

self.log

For consistency in logging, a custom Logger object is instantiated for every Actor. This logging object ensures that
prefixes such as the desc of an Actor are included in the log messages. Usage examples:

self.log.error('Hey, something failed')
self.log.info('I am doing work')
self.log.warning('I do not think that should have happened')

5.5.5 self.option

Accessing options passed to the actor from the JSON file should be done via self.option() method. Accessing
self._options parameter is not recommended, and the edge cases should be handled via the all_options
class variable.

5.5.6 Exception Handling

5.6 Simple API Access Objects

Most of the APIs out there leverage basic REST with JSON or XML as the data encoding method. Since these APIs
behave similarly, we have created a simple API access object that can be extended for creating actors quickly. The ob-
ject is called a RestConsumer and is in the kingpin.actors.support.api package. This RestConsumer
can be subclassed and filled in with a dict that describes the API in detail.

5.6.1 HTTPBin Actor with the RestConsumer

HTTPBIN = {
'path': '/',
'http_methods': {'get': {}},
'attrs': {

'get': {
'path': '/get',
'http_methods': {'get': {}},

5.6. Simple API Access Objects 47

Kingpin Documentation, Release 0.3.0

},
'post': {

'path': '/post',
'http_methods': {'post': {}},

},
'put': {

'path': '/put',
'http_methods': {'put': {}},

},
'delete': {

'path': '/delete',
'http_methods': {'delete': {}},

},
}

}

class HTTPBinRestClient(api.RestConsumer):

_CONFIG = HTTPBIN
_ENDPOINT = 'http://httpbin.org'

class HTTPBinGetThenPost(base.BaseActor):
def __init__(self, *args, **kwargs):

super(HTTPBinGetThenPost, self).__init__(*args, **kwargs)
self._api = HTTPBinRestClient()

@gen.coroutine
def _execute(self):

yield self._api.get().http_get()

if self._dry
raise gen.Return()

yield self._api.post().http_post(foo='bar')

raise gen.Return()

5.6.2 Exception Handling in HTTP Requests

The RestClient.fetch() method has been wrapped in a retry decorator that allows you to define dif-
ferent behaviors based on the exceptions returned from the fetch method. For example, you may want to handle an
HTTPError exception with a 401 error code differently than a 503 error code.

You can customize the exception handling by subclassing the RestClient:

class MyRestClient(api.RestClient):
_EXCEPTIONS = {

httpclient.HTTPError: {
'401': my.CustomException(),
'403': exceptions.InvalidCredentials,
'500': my.UnretryableError(),
'502': exceptions.InvalidOptions,

This acts as a catch-all
'': exceptions.RecoverableActorFailure,

48 Chapter 5. Development

Kingpin Documentation, Release 0.3.0

}
}

5.6. Simple API Access Objects 49

Kingpin Documentation, Release 0.3.0

50 Chapter 5. Development

CHAPTER 6

Full Module Docs

6.1 kingpin.actors.aws.base

The AWS Actors allow you to interact with the resources (such as SQS and ELB) inside your Amazon AWS account.
These actors all support dry runs properly, but each actor has its own caveats with dry=True. Please read the
instructions below for using each actor.

Required Environment Variables

AWS_ACCESS_KEY_ID Your AWS access key

AWS_SECRET_ACCESS_KEY Your AWS secret

exception kingpin.actors.aws.base.ELBNotFound
Raised when an ELB is not found

exception kingpin.actors.aws.base.InvalidMetaData
Raised when fetching AWS metadata.

6.2 kingpin.actors.aws.cloudformation

exception kingpin.actors.aws.cloudformation.CloudFormationError
Raised on any generic CloudFormation error.

exception kingpin.actors.aws.cloudformation.InvalidTemplate
An invalid CloudFormation template was supplied.

exception kingpin.actors.aws.cloudformation.StackAlreadyExists
The requested CloudFormation stack already exists.

exception kingpin.actors.aws.cloudformation.StackNotFound
The requested CloudFormation stack does not exist.

class kingpin.actors.aws.cloudformation.CloudFormationBaseActor(*args, **kwargs)
Base Actor for CloudFormation tasks

class kingpin.actors.aws.cloudformation.Create(*args, **kwargs)
Creates a CloudFormation stack.

Creates a CloudFormation stack from scratch and waits until the stack is fully built before exiting the actor.

Options

Capabilities A list of CF capabilities to add to the stack.

51

Kingpin Documentation, Release 0.3.0

Disable_rollback Set to True to disable rollback of the stack if creation failed.

Name The name of the queue to create

Parameters A dictionary of key/value pairs used to fill in the parameters for the CloudFormation
template.

Region AWS region (or zone) string, like ‘us-west-2’

Template String of path to CloudFormation template. Can either be in the form of a local file path
(ie, /my_template.json) or a URI (ie https://my_site.com/cf.json).

Timeout_in_minutes The amount of time that can pass before the stack status becomes CRE-
ATE_FAILED.

Examples

{ "desc": "Create production backend stack",
"actor": "aws.cloudformation.Create",
"options": {

"capabilities": ["CAPABILITY_IAM"],
"disable_rollback": true,
"name": "%CF_NAME%",
"parameters": {
"test_param": "%TEST_PARAM_NAME%",

},
"region": "us-west-1",
"template": "/examples/cloudformation_test.json",
"timeout_in_minutes": 45,

}
}

Dry Mode

Validates the template, verifies that an existing stack with that name does not exist. Does not create the stack.

class kingpin.actors.aws.cloudformation.Delete(*args, **kwargs)
Deletes a CloudFormation stack

Options

Name The name of the queue to create

Region AWS region (or zone) string, like ‘us-west-2’

Examples

{ "desc": "Create production backend stack",
"actor": "aws.cloudformation.Create",
"options" {

"region": "us-west-1",
"name": "%CF_NAME%",

}
}

Dry Mode

Validates that the CF stack exists, but does not delete it.

52 Chapter 6. Full Module Docs

Kingpin Documentation, Release 0.3.0

6.3 kingpin.actors.aws.elb

exception kingpin.actors.aws.elb.CertNotFound
Raised when an ELB is not found

kingpin.actors.aws.elb.p2f(string)
Convert percentage string into float.

Converts string like ‘78.9%’ into 0.789

class kingpin.actors.aws.elb.ELBBaseActor(*args, **kwargs)
Base class for ELB actors.

class kingpin.actors.aws.elb.WaitUntilHealthy(*args, **kwargs)
Wait indefinitely until a specified ELB is considered “healthy”.

This actor will loop infinitely until a healthy threshold of the ELB is met. The threshold can be reached when
the count as specified in the options is less than or equal to the number of InService instances in the ELB.

Another situation is for count to be a string specifying a percentage (see examples). In this case the percent of
InService instances has to be greater than the count percentage.

Options

Name The name of the ELB to operate on

Count Number, or percentage of InService instance to consider this ELB healthy

Region AWS region (or zone) name, such as us-east-1 or us-west-2

Examples

{ "actor": "aws.elb.WaitUntilHealthy",
"desc": "Wait until production-frontend has 16 hosts",
"options": {

"name": "production-frontend",
"count": 16,
"region": "us-west-2"

}
}

{ "actor": "aws.elb.WaitUntilHealthy",
"desc": "Wait until production-frontend has 85% of hosts in-service",
"options": {

"name": "production-frontend",
"count": "85%",
"region": "us-west-2"

}
}

Dry Mode

This actor performs the finding of the ELB as well as calculating its health at all times. The only difference
in dry mode is that it will not re-count the instances if the ELB is not healthy. A log message will be printed
indicating that the run is dry, and the actor will exit with success.

class kingpin.actors.aws.elb.SetCert(*args, **kwargs)
Find a server cert in IAM and use it for a specified ELB.

Options

Region (str) AWS region (or zone) name, like us-west-2

6.3. kingpin.actors.aws.elb 53

Kingpin Documentation, Release 0.3.0

Name (str) Name of the ELB

Cert_name (str) Unique IAM certificate name, or ARN

Port (int) Port associated with the cert. (default: 443)

Example

{ "actor": "aws.elb.SetCert",
"desc": "Run SetCert",
"options": {

"cert_name": "new-cert",
"name": "some-elb",
"region": "us-west-2"

}
}

Dry run

Will check that ELB and Cert names are existent, and will also check that the credentials provided for AWS
have access to the new cert for ssl.

class kingpin.actors.aws.elb.RegisterInstance(*args, **kwargs)
Add an EC2 instance to a load balancer.

Options

Elb (str) Name of the ELB

Instances (str, list) Instance id, or list of ids. Default “self” id.

Region (str) AWS region (or zone) name, like us-west-2

Enable_zones (bool) add all available AZ to the elb. Default: True

Example

{ "actor": "aws.elb.RegisterInstance",
"desc": "Run RegisterInstance",
"options": {

"elb": "prod-loadbalancer",
"instances": "i-123456",
"region": "us-east-1",

}
}

Dry run

Will find the specified ELB, but not take any actions regarding instances.

class kingpin.actors.aws.elb.DeregisterInstance(*args, **kwargs)
Remove EC2 instance(s) from an ELB.

Options

Elb (str) Name of the ELB

Instances (str, list) Instance id, or list of ids

Region (str) AWS region (or zone) name, like us-west-2

Example

{ "actor": "aws.elb.DeregisterInstance",
"desc": "Run DeregisterInstance",
"options": {

54 Chapter 6. Full Module Docs

Kingpin Documentation, Release 0.3.0

"elb": "fill-in",
"instances": "fill-in",
"region": "fill-in"

}
}

Dry run

Will find the ELB but not take any actions regarding the instances.

6.4 kingpin.actors.aws.iam

class kingpin.actors.aws.iam.IAMBaseActor(*args, **kwargs)
Base class for IAM actors.

class kingpin.actors.aws.iam.UploadCert(*args, **kwargs)
Uploads a new SSL Cert to AWS IAM.

Options

Private_key_path (str) Path to the private key.

Path (str) The AWS “path” for the server certificate. Default: “/”

Public_key_path (str) Path to the public key certificate.

Name (str) The name for the server certificate.

Cert_chain_path (str) Path to the certificate chain. Optional.

Example

{ "actor": "aws.iam.UploadCert",
"desc": "Upload a new cert",
"options": {

"name": "new-cert",
"private_key_path": "/cert.key",
"public_key_path": "/cert.pem",
"cert_chain_path": "/cert-chain.pem"

}
}

Dry run

Checks that the passed file paths are valid. In the future will also validate that the files are of correct format and
content.

class kingpin.actors.aws.iam.DeleteCert(*args, **kwargs)
Delete an existing SSL Cert in AWS IAM.

Options

Name (str) The name for the server certificate.

Example

{ "actor": "aws.iam.DeleteCert",
"desc": "Run DeleteCert",
"options": {

"name": "fill-in"

6.4. kingpin.actors.aws.iam 55

Kingpin Documentation, Release 0.3.0

}
}

Dry run

Will find the cert by name or raise an exception if it’s not found.

6.5 kingpin.actors.aws.settings

Common settings used by many of the kingpin.actors.aws modules.

kingpin.actors.aws.settings.is_retriable_exception(exception)
Return true if this AWS exception is transient and should be retried.

Example:

>>> @retry(retry_on_exception=is_retriable_exception)

6.6 kingpin.actors.aws.sqs

exception kingpin.actors.aws.sqs.QueueNotFound
Raised by SQS Actor when a needed queue is not found.

exception kingpin.actors.aws.sqs.QueueDeletionFailed
Raised if Boto fails to delete an SQS queue.

http://boto.readthedocs.org/en/latest/ref/ sqs.html#boto.sqs.connection.SQSConnection.delete_queue

class kingpin.actors.aws.sqs.Create(*args, **kwargs)
Creates a new SQS queue with the specified name

Options

Name (str) The name of the queue to create

Region (str) AWS region (or zone) string, like ‘us-west-2’

Examples

{ "actor": "aws.sqs.Create",
"desc": "Create queue named async-tasks",
"options": {

"name": "async-tasks",
"region": "us-east-1",

}
}

Dry Mode

Will not create any queue, or even contact SQS. Will create a mock.Mock object and exit with success.

class kingpin.actors.aws.sqs.Delete(*args, **kwargs)
Deletes the SQS queues

Note: even if it‘s not empty

Options

Name (str) The name of the queue to destroy

56 Chapter 6. Full Module Docs

http://boto.readthedocs.org/en/latest/ref/

Kingpin Documentation, Release 0.3.0

Region (str) AWS region (or zone) string, like ‘us-west-2’

Idempotent (bool) Will not raise errors if no matching queues are found. (default: False)

Examples

{ "actor": "aws.sqs.Delete",
"desc": "Delete queue async-tasks",
"options": {

"name": "async-tasks",
"region": "us-east-1"

}
}

{ "actor": "aws.sqs.Delete",
"desc": "Delete queues with 1234 in the name",
"options": {

"name": "1234",
"region": "us-east-1"

}
}

Dry Mode

Will find the specified queue, but will have a noop regarding its deletion. Dry mode will fail if no queues are
found, and idempotent flag is set to False.

class kingpin.actors.aws.sqs.WaitUntilEmpty(*args, **kwargs)
Wait indefinitely until for SQS queues to become empty

This actor will loop infinitely as long as the count of messages in at least one queue is greater than zero. SQS
does not guarantee exact count, so this can return a stale value if the number of messages in the queue changes
rapidly.

Options

Name (str) The name or regex pattern of the queues to operate on

Region (str) AWS region (or zone) string, like ‘us-west-2’

Required (bool) Fail if no matching queues are found. (default: False)

Examples

{ "actor": "aws.sqs.WaitUntilEmpty",
"desc": "Wait until release-0025a* queues are empty",
"options": {

"name": "release-0025a",
"region": "us-east-1",
"required": true

}
}

Dry Mode

This actor performs the finding of the queue, but will pretend that the count is 0 and return success. Will fail
even in dry mode if required option is set to True and no queues with the name pattern are found.

6.7 kingpin.actors.base

Base Actor object class

6.7. kingpin.actors.base 57

Kingpin Documentation, Release 0.3.0

An Actor object is a class that executes a single logical action on a resource as part of your deployment structure. For
example, you may have an Actor that launches a server array in RightScale, or you may have one that sends an email.

Each Actor object should do one thing, and one thing only. Its responsible for being able to execute the operation in
both ‘dry’ and ‘non-dry’ modes.

The behavior for ‘dry’ mode can contain real API calls, but should not make any live changes. It is up to the developer
of the Actor to define what ‘dry’ mode looks like for that particular action.

class kingpin.actors.base.BaseActor(desc, options, dry=False, warn_on_failure=False, condi-
tion=True, init_context={}, timeout=None)

Abstract base class for Actor objects.

option(name)
Return the value for a given Actor option.

readfile(path)
Return file contents as a string.

Raises: InvalidOptions if file is not found, or readable.

timer(f)
Coroutine-compatible function timer.

Records statistics about how long a given function took, and logs them out in debug statements. Used
primarily for tracking Actor execute() methods, but can be used elsewhere as well.

Example usage:

>>> @gen.coroutine
... @timer()
... def execute(self):
... raise gen.Return()

timeout(*args, **kwargs)
Wraps a Coroutine method in a timeout.

Used to wrap the self.execute() method in a timeout that will raise an ActorTimedOut exception if an actor
takes too long to execute.

Note, Tornado 4+ does not allow you to actually kill a task on the IOLoop. This means that all we are
doing here is notifying the caller (through the raised exception) that a problem has happened.

Fairly simple Actors should actually ‘stop executing’ when this exception is raised. Complex actors with
very unique behaviors though (like the rightsacle.server_array.Execute actor) have the ability to continue
to execute in the background until the Kingpin application quits. It is not the job of this method to try to
kill these actors, but just to let the user know that a failure has happened.

class kingpin.actors.base.HTTPBaseActor(desc, options, dry=False, warn_on_failure=False,
condition=True, init_context={}, timeout=None)

Abstract base class for an HTTP-client based Actor object.

This class provides common methods for getting access to asynchronous HTTP clients, wrapping the executions
in appropriate try/except blocks, timeouts, etc.

If you’re writing an Actor that uses a remote REST API, this is the base class you should subclass from.

6.8 kingpin.actors.exceptions

All common Actor exceptions

58 Chapter 6. Full Module Docs

Kingpin Documentation, Release 0.3.0

exception kingpin.actors.exceptions.ActorException
Base Kingpin Actor Exception

exception kingpin.actors.exceptions.RecoverableActorFailure
Base exception that allows script executions to continue on failure.

This exception class is used to throw an error when an Actor fails, but it was an expected and/or acceptable
failure.

This should be used for exceptions that are somewhat normal ... for example, trying to delete a ServerArray
thats already gone.

exception kingpin.actors.exceptions.UnrecoverableActorFailure
Base exception for unrecoverable failures.

This exception class should be used for critical failures that should always stop a set of Kingpin actors in-place,
regardless of the actors warn_on_failure setting.

Examples would be when credentials are incorrect, or an unexpected exception is caught and there is no known
recovery point.

exception kingpin.actors.exceptions.ActorTimedOut
Raised when an Actor takes too long to execute

exception kingpin.actors.exceptions.InvalidActor
Raised when an invalid Actor name was supplied

exception kingpin.actors.exceptions.InvalidOptions
Invalid option arguments passed into the Actor object.

This can be used both for the actual options dict passed into the actor, as well as if a the wrong options were
used when connecting to a remote API.

exception kingpin.actors.exceptions.InvalidCredentials
Invalid or missing credentials required for Actor object.

exception kingpin.actors.exceptions.UnparseableResponseFromEndpoint
Invalid response returned from a remote REST endpoint.

exception kingpin.actors.exceptions.BadRequest
An action failed due to a HTTP 400 error likely due to bad input.

6.9 kingpin.actors.group

Group a series of other BaseActor into either synchronous or asynchronous stages.

class kingpin.actors.group.BaseGroupActor(*args, **kwargs)
Group together a series of other kingpin.actors.base.BaseActor objects

Acts [<list of kingpin.actors.base.BaseActor objects to execute>]

class kingpin.actors.group.Sync(*args, **kwargs)
Execute a series of kingpin.actors.base.BaseActor synchronously.

Groups together a series of Actors and executes them synchronously in the order that they were defined.

Options

Acts An array of individual Actor definitions.

6.9. kingpin.actors.group 59

Kingpin Documentation, Release 0.3.0

Contexts A list of dictionaries with contextual tokens to pass into the actors at instantiation time. If
the list has more than one element, then every actor defined in acts will be instantiated once
for each item in the contexts list.

Timeouts

Timeouts are disabled specifically in this actor. The sub-actors can still raise their own
kingpin.actors.exceptions.ActorTimedOut exceptions, but since the group actors run
an arbitrary number of sub actors, we have chosen to not have this actor specifically raise its own
kingpin.actors.exceptions.ActorTimedOut exception unless the user sets the timeout
setting.

Examples

Creates two arrays ... but sleeps 60 seconds between the two, then does not sleep at all after the last one:

{ "desc": "Clone, then sleep ... then clone, then sleep shorter...",
"actor": "group.Sync",
"options": {

"contexts": [
{ "ARRAY": "First", "SLEEP": "60", },
{ "ARRAY": "Second", "SLEEP": "0", }

],
"acts": [

{ "desc": "do something",
"actor": "server_array.Clone",
"options": {

"source": "template",
"dest": "{ARRAY}"

}
},
{ "desc": "sleep",
"actor": "misc.Sleep",
"options": {

"sleep": "{SLEEP}",
}

}
]

}
}

Dry Mode

Passes on the Dry mode setting to the acts that are called. Does not stop execution when one of the acts fails.
Instead Group actor will finish all acts with warnings, and raise an error at the end of execution.

This provides the user with an insight to all the errors that are possible to encounter, rather than abort and quit
on the first one.

Failure

In the event that an act fails, this actor will return the failure immediately. Because the acts are executed in-order
of definition, the failure will prevent any further acts from executing.

The behavior is different in the dry run (read above.)

class kingpin.actors.group.Async(*args, **kwargs)
Execute several kingpin.actors.base.BaseActor objects asynchronously.

Groups together a series of Actors and executes them asynchronously - waiting until all of them finish before
returning.

60 Chapter 6. Full Module Docs

Kingpin Documentation, Release 0.3.0

Options

Concurrency Max number of concurrent executions. This will fire off N executions in parallel, and
continue with the remained as soon as the first execution is done. This is faster than creating N
Sync executions.

Acts An array of individual Actor definitions.

Contexts A list of dictionaries with contextual tokens to pass into the actors at instantiation time. If
the list has more than one element, then every actor defined in acts will be instantiated once
for each item in the contexts list.

Timeouts

Timeouts are disabled specifically in this actor. The sub-actors can still raise their own
kingpin.actors.exceptions.ActorTimedOut exceptions, but since the group actors run
an arbitrary number of sub actors, we have chosen to not have this actor specifically raise its own
kingpin.actors.exceptions.ActorTimedOut exception unless the user sets the timeout
setting.

Examples

Clone two arrays quickly.

{ "desc": "Clone two arrays",
"actor": "group.Async",
"options": {

"contexts": [
{ "ARRAY": "NewArray1" },
{ "ARRAY": "NewArray2" }

],
"acts": [

{ "desc": "do something",
"actor": "server_array.Clone",
"options": {

"source": "template",
"dest": "{ARRAY}",

}
}

]
}

}

Dry Mode

Passes on the Dry mode setting to the sub-actors that are called.

Failure

In the event that one or more acts fail in this group, the entire group acts will return a failure to Kingpin.
Because multiple actors are executing all at the same time, the all of these actors will be allowed to finish before
the failure is returned.

6.10 kingpin.actors.hipchat

The Hipchat Actors allow you to send messages to a HipChat room at stages during your job execution. The actor
supports dry mode by validating that the configured API Token has access to execute the methods, without actually
sending the messages.

Required Environment Variables

6.10. kingpin.actors.hipchat 61

Kingpin Documentation, Release 0.3.0

HIPCHAT_TOKEN HipChat API Token

HIPCHAT_NAME HipChat message from name (defaults to Kingpin)

class kingpin.actors.hipchat.HipchatBase(*args, **kwargs)
Simple Hipchat Abstract Base Object

class kingpin.actors.hipchat.Message(*args, **kwargs)
Sends a message to a room in HipChat.

Options

Room (str) The string-name (or ID) of the room to send a message to

Message (str) Message to send

Examples

{ "actor": "hipchat.Message",
"desc": "Send a message!",
"options": {

"room": "Operations",
"message": "Beginning Deploy: v1.2"

}
}

Dry Mode

Fully supported – does not actually send messages to a room, but validates that the API credentials would have
access to send the message using the HipChat auth_test optional API argument.

class kingpin.actors.hipchat.Topic(*args, **kwargs)
Sets a HipChat room topic.

Options

•room - The string-name (or ID) of the room to set the topic of

•topic - String of the topic to send

Examples

{ "actor": "hipchat.Topic",
"desc": "set the room topic",
"options": {

"room": "Operations",
"topic": "Latest Deployment: v1.2"

}
}

Dry Mode

Fully supported – does not actually set a room topic, but validates that the API credentials would have access to
set the topic of the room requested.

6.11 kingpin.actors.librato

The Librato Actor allows you to post an Annotation to Librato. This is specifically useful for marking when deploy-
ments occur on your graphs for cause/effect analysis.

Required Environment Variables

LIBRATO_TOKEN Librato API Token

62 Chapter 6. Full Module Docs

Kingpin Documentation, Release 0.3.0

LIBRATO_EMAIL Librato email account (i.e. username)

class kingpin.actors.librato.Annotation(*args, **kwargs)
Librato Annotation Actor

Posts an Annotation to Librato.

Options

Title The title of the annotation

Description The description of the annotation

Name Name of the metric to annotate

Examples

{ "actor": "librato.Annotation",
"desc": "Mark our deployment",
"options": {

"title": "Deploy",
"description": "Version: 0001a",
"name": "production_releases"

}
}

Dry Mode

Currently does not actually do anything, just logs dry mode.

6.12 kingpin.actors.misc

These are common utility Actors that don’t really need their own dedicated packages. Things like sleep timers, loggers,
etc.

Optional Environment Variables

URLLIB_DEBUG Set this variable to enable extreme debug logging of the URLLIB requests made by
the RightScale/AWS actors. Note, this is very insecure as headers/cookies/etc. are exposed

class kingpin.actors.misc.Macro(*args, **kwargs)
Parses a kingpin JSON file, instantiates and executes it.

Parse JSON

Kingpin JSON has 2 passes at its validity. JSON syntax must be valid, with the exception of a few useful
deviations allowed by demjson parser. Main one being the permission of inline comments via /* this */
syntax.

The second pass is validating the Schema. The JSON file will be validated for schema-conformity as one of the
first things that happens at load-time when the app starts up. If it fails, you will be notified immediately.

Lastly after JSON is established to be valid, all the tokens are replaced with their specified value. Any key/value
pair passed in the tokens option will be available inside of the JSON file as %KEY% and replaced with the
value at this time.

In a situation where nested Macro executions are invoked the tokens do not propagate from outter macro into
the inner. This allows to reuse token names, but forces the user to specify every token needed. Similarly, if
environment variables are used for token replacement in the main file, these tokens are not available in the
subsequent macros.

Pre-Instantiation

6.12. kingpin.actors.misc 63

http://deron.meranda.us/python/demjson/

Kingpin Documentation, Release 0.3.0

In an effort to prevent mid-run errors, we pre-instantiate all Actor objects all at once before we ever begin
executing code. This ensures that major typos or misconfigurations in the JSON will be caught early on.

Execution

misc.Macro actor simply calls the execute() method of the most-outter actor; be it a single action, or a
group actor.

Options

File String of local path to a JSON file.

Tokens Dictionary to search/replace within the file.

Examples

{ "desc": "Stage 1",
"actor": "misc.Macro",
"options": {

"file": "deployment/stage-1.json",
"tokens": {

"TIMEOUT": 360,
"RELEASE": "%RELEASE%"

}
}

}

Dry Mode

Fully supported – instantiates the actor inside of JSON with dry=True. The behavior of the consecutive actor is
unique to each; read their description for more information on dry mode.

class kingpin.actors.misc.Sleep(desc, options, dry=False, warn_on_failure=False, condi-
tion=True, init_context={}, timeout=None)

Sleeps for an arbitrary number of seconds.

Options

Sleep Integer of seconds to sleep.

Examples

{ "actor": "misc.Sleep",
"desc": "Sleep for 60 seconds",
"options": {

"sleep": 60
}

}

Dry Mode

Fully supported – does not actually sleep, just pretends to.

class kingpin.actors.misc.GenericHTTP(desc, options, dry=False, warn_on_failure=False, condi-
tion=True, init_context={}, timeout=None)

A very simple actor that allows GET/POST methods over HTTP.

Does a GET or a POST to a specified URL.

Options

Url Destination URL

Data Optional POST data as a dict

Username Optional for HTTPAuth.

64 Chapter 6. Full Module Docs

https://docs.python.org/library/stdtypes.html#dict

Kingpin Documentation, Release 0.3.0

Password Optional for HTTPAuth.

Examples

{ "actor": "misc.GenericHTTP",
"desc": "Make a simple web call",
"options": {

"url": "http://example.com/rest/api/v1?id=123&action=doit",
"username": "secret",
"password": "%SECRET_PASSWORD%"

}
}

Dry Mode

Will not do anything in dry mode except print a log statement.

6.13 kingpin.actors.packagecloud

The packagecloud actor allows you to perform maintenance operations on repositories hosted by packagecloud.io
using their API:

https://packagecloud.io/docs/api

Required Environment Variables

PACKAGECLOUD_ACCOUNT packagecloud account name, i.e.
https://packagecloud.io/PACKAGECLOUD_ACCOUNT

PACKAGECLOUD_TOKEN packagecloud API Token

class kingpin.actors.packagecloud.PackagecloudBase(*args, **kwargs)
Simple packagecloud Abstract Base Object

class kingpin.actors.packagecloud.Delete(*args, **kwargs)
Deletes packages from a PackageCloud repo.

Searches for packages that match the packages_to_delete regex pattern and deletes them. If
number_to_keep is set, we always at least this number of versions of the given package intact in the repo.
Also if number_to_keep is set, the older versions of a package (based on upload time) packages will be
deleted first effectively leaving newer packages in the repo.

Options

Number_to_keep Keep at least this number of each package (defaults to 0)

Packages_to_delete Regex of packages to delete, e.g. pkg1|pkg2

Repo Which packagecloud repo to delete from

Examples

{ "desc": "packagecloud Delete example",
"actor": "packagecloud.Delete",
"options": {

"number_to_keep": 10,
"packages_to_delete": "deleteme",
"repo": "test"

}
}

6.13. kingpin.actors.packagecloud 65

https://packagecloud.io/docs/api
https://packagecloud.io/PACKAGECLOUD_ACCOUNT

Kingpin Documentation, Release 0.3.0

class kingpin.actors.packagecloud.DeleteByDate(*args, **kwargs)
Deletes packages from a PackageCloud repo older than X.

Adds additional functionality to the Delete class with a older_than option. Only packages older than that
number of seconds will be deleted.

Options

Number_to_keep Keep at least this number of each package (defaults to 0)

Older_than Delete packages created before this number of seconds

Packages_to_delete Regex of packages to delete, e.g. pkg1|pkg2

Repo Which packagecloud repo to delete from

Examples

{ "desc": "packagecloud DeleteByDate example",
"actor": "packagecloud.DeleteByDate",
"options": {

"number_to_keep": 10,
"older_than": 600,
"packages_to_delete": "deleteme",
"repo": "test"

}
}

class kingpin.actors.packagecloud.WaitForPackage(*args, **kwargs)
Searches for a package that matches name and version until found or a timeout occurs.

Options

Name Name of the package to search for as a regex

Version Version of the package to search for as a regex

Repo Which packagecloud repo to delete from

Sleep Number of seconds to sleep for between each search

Examples

{ "desc": "packagecloud WaitForPackage example",
"actor": "packagecloud.WaitForPackage",
"options": {

"name": "findme",
"version": "0.1",
"repo": "test",
"sleep": 10,

}
}

6.14 kingpin.actors.pingdom

Pingdom actors to pause and unpause checks. These are useful when you are aware of an expected downtime and
don’t want to be alerted about it. Also known as Maintenance mode.

Required Environment Variables

PINGDOM_TOKEN Pingdom API Token

66 Chapter 6. Full Module Docs

Kingpin Documentation, Release 0.3.0

PINGDOM_USER Pingdom Username (email)

PINGDOM_PASS Pingdom Password

class kingpin.actors.pingdom.PingdomBase(*args, **kwargs)
Simple Pingdom Abstract Base Object

class kingpin.actors.pingdom.Pause(*args, **kwargs)
Start Pingdom Maintenance.

Pause a particular “check” on Pingdom.

Options

Name (Str) Name of the check

Example

{ "actor": "pingdom.Pause",
"desc": "Run Pause",
"options": {

"name": "fill-in"
}

}

Dry run

Will assert that the check name exists, but not take any action on it.

class kingpin.actors.pingdom.Unpause(*args, **kwargs)
Stop Pingdom Maintenance.

Unpause a particular “check” on Pingdom.

Options

Name (Str) Name of the check

Example

{ "actor": "pingdom.Unpause",
"desc": "Run unpause",
"options": {

"name": "fill-in"
}

}

Dry run

Will assert that the check name exists, but not take any action on it.

6.15 kingpin.actors.rightscale.api

Base RightScale API Access Object.

This package provides access to the RightScale API via Tornado-style @gen.coroutine wrapped methods. These
methods are, however, just wrappers for threads that are being fired off in the background to make the API calls.

Async vs Threads

In the future, this will get re-factored to use a native Tornado AsyncHTTPClient object. The methods themselves will
stay the same, but the underlying private methods will change.

6.15. kingpin.actors.rightscale.api 67

Kingpin Documentation, Release 0.3.0

The methods in this object are specifically designed to support common operations that the RightScale Actor objects
need to do. Operations like ‘find server array’, ‘launch server array’, etc. This is not meant as a pure one-to-one
mapping of the RightScale API, but rather a mapping of conceptual operations that the Actors need.

Method Design Note

RightScale mixes and matches their API calls... some of them you pass in a major method and then supply a resource
ID to act on. Others you pass in the resource_id and get back a list of methods that you can execute.

For consistency in our programming model, this class relies o you passing in rightscale.Resource objects everywhere,
and it does the resource->ID translation.

exception kingpin.actors.rightscale.api.ServerArrayException
Raised when an operation on or looking for a ServerArray fails

6.16 kingpin.actors.rightscale.base

The RightScale Actors allow you to interact with resources inside your Rightscale account. These actors all support
dry runs properly, but each actor has its own caveats with dry=True. Please read the instructions below for using
each actor.

Required Environment Variables

RIGHTSCALE_TOKEN RightScale API Refresh Token (from the Account Settings/API Credentials
page)

RIGHTSCALE_ENDPOINT Your account-specific API Endpoint (defaults to
https://my.rightscale.com)

exception kingpin.actors.rightscale.base.ArrayNotFound
Raised when a ServerArray could not be found.

exception kingpin.actors.rightscale.base.ArrayAlreadyExists
Raised when a ServerArray already exists by a given name.

class kingpin.actors.rightscale.base.RightScaleBaseActor(*args, **kwargs)
Abstract class for creating RightScale cloud actors.

6.17 kingpin.actors.rightscale.server_array

exception kingpin.actors.rightscale.server_array.InvalidInputs
Raised when supplied inputs are invalid for a ServerArray.

exception kingpin.actors.rightscale.server_array.TaskExecutionFailed
Raised when one or more RightScale Task executions fail.

class kingpin.actors.rightscale.server_array.ServerArrayBaseActor(*args,
**kwargs)

Abstract ServerArray Actor that provides some utility methods.

class kingpin.actors.rightscale.server_array.Clone(*args, **kwargs)
Clones a RightScale Server Array.

Clones a ServerArray in RightScale and renames it to the newly supplied name. By default, this actor is ex-
tremely strict about validating that the source array already exists, and that the dest array does not yet exist.
This behavior can be overridden though if your Kingpin script creates the source, or destroys an existing
dest ServerArray sometime before this actor executes.

68 Chapter 6. Full Module Docs

https://my.rightscale.com

Kingpin Documentation, Release 0.3.0

Options

Source The name of the ServerArray to clone

Strict_source Whether or not to fail if the source ServerArray does not exist. (default: True)

Dest The new name for your cloned ServerArray

Strict_dest Whether or not to fail if the destination ServerArray already exists. (default: True)

Examples

Clone my-template-array to my-new-array:

{ "desc": "Clone my array",
"actor": "rightscale.server_array.Clone",
"options": {

"source": "my-template-array",
"dest": "my-new-array"

}
}

Clone an array that was created sometime earlier in the Kingpin JSON, and thus does not exist yet during the
dry run:

{ "desc": "Clone that array we created earlier",
"actor": "rightscale.server_array.Clone",
"options": {

"source": "my-template-array",
"strict_source": false,
"dest": "my-new-array"

}
}

Clone an array into a destination name that was destroyed sometime earlier in the Kingpin JSON:

{ "desc": "Clone that array we created earlier",
"actor": "rightscale.server_array.Clone",
"options": {

"source": "my-template-array",
"dest": "my-new-array",
"strict_dest": false,

}
}

Dry Mode

In Dry mode this actor does validate that the source array exists. If it does not, a
kingpin.actors.rightscale.api.ServerArrayException is thrown. Once that has been val-
idated, the dry mode execution pretends to copy the array by creating a mocked cloned array resource. This
mocked resource is then operated on during the rest of the execution of the actor, guaranteeing that no live
resources are modified.

Example dry output:

[Copy Test (DRY Mode)] Verifying that array "temp" exists
[Copy Test (DRY Mode)] Verifying that array "new" does not exist
[Copy Test (DRY Mode)] Cloning array "temp"
[Copy Test (DRY Mode)] Renaming array "<mocked clone of temp>" to "new"

class kingpin.actors.rightscale.server_array.Update(*args, **kwargs)
Update ServerArray Settings

6.17. kingpin.actors.rightscale.server_array 69

Kingpin Documentation, Release 0.3.0

Updates an existing ServerArray in RightScale with the supplied parameters. Can update any parameter that is
described in the RightScale API docs here:

Parameters are passed into the actor in the form of a dictionary, and are then converted into the RightScale
format. See below for examples.

Options

Array (str) The name of the ServerArray to update

Exact (bool) whether or not to search for the exact array name. (default: true)

Params (dict) Dictionary of parameters to update

Inputs (dict) Dictionary of next-instance server arryay inputs to update

Examples

{ "desc": "Update my array",
"actor": "rightscale.server_array.Update",
"options": {

"array": "my-new-array",
"params": {
"elasticity_params": {
"bounds": {
"min_count": 4

},
"schedule": [

{"day": "Sunday", "max_count": 2,
"min_count": 1, "time": "07:00" },

{"day": "Sunday", "max_count": 2,
"min_count": 2, "time": "09:00" }

]
},
"name": "my-really-new-name"

}
}

}

{ "desc": "Update my array inputs",
"actor": "rightscale.server_array.Update",
"options": {

"array": "my-new-array",
"inputs": {
"ELB_NAME": "text:foobar"

}
}

}

Dry Mode

In Dry mode this actor does search for the array, but allows it to be missing because its highly likely that the
array does not exist yet. If the array does not exist, a mocked array object is created for the rest of the execution.

During the rest of the execution, the code bypasses making any real changes and just tells you what changes it
would have made.

This means that the dry mode cannot validate that the supplied inputs will work.

Example dry output:

[Update Test (DRY Mode)] Verifying that array "new" exists
[Update Test (DRY Mode)] Array "new" not found -- creating a mock.

70 Chapter 6. Full Module Docs

Kingpin Documentation, Release 0.3.0

[Update Test (DRY Mode)] Would have updated "<mocked array new>" with
params: {'server_array[name]': 'my-really-new-name',

'server_array[elasticity_params][bounds][min_count]': '4'}

class kingpin.actors.rightscale.server_array.UpdateNextInstance(*args, **kwargs)
Update the Next Instance parameters for a Server Array

Updates an existing ServerArray in RightScale with the supplied parameters. Can update any parameter that is
described in the RightScale ResourceInstances docs.

Note about the image_href parameter

If you pass in the string default to the image_href key in your params dictionary, we will search and find
the default image that your ServerArray’s Multi Cloud Image refers to. This helper is useful if you update your
ServerArrays to use custom AMIs, and then occasionally want to go back to using a stock AMI. For example,
if you boot up your instances occasionally off a stock AMI, customize the host, and then bake that host into a
custom AMI.

Parameters are passed into the actor in the form of a dictionary, and are then converted into the RightScale
format. See below for examples.

Options

Array (str) The name of the ServerArray to update

Exact (bool) whether or not to search for the exact array name. (default: true)

Params (dict) Dictionary of parameters to update

Examples

{ "desc": "Update my array",
"actor": "rightscale.server_array.UpdateNextInstance",
"options": {

"array": "my-new-array",
"params": {
"associate_public_ip_address": true,
"image_href": "/image/href/123",

}
}

}

{ "desc": "Reset the AMI image to the MCI default",
"actor": "rightscale.server_array.UpdateNextInstance",
"options": {

"array": "my-new-array",
"params": {
"image_href": "default",

}
}

}

Dry Mode

In Dry mode this actor does search for the array, but allows it to be missing because its highly likely that the
array does not exist yet. If the array does not exist, a mocked array object is created for the rest of the execution.

During the rest of the execution, the code bypasses making any real changes and just tells you what changes it
would have made.

This means that the dry mode cannot validate that the supplied params will work.

Example dry output:

6.17. kingpin.actors.rightscale.server_array 71

http://reference.rightscale.com/api1.5/resources/ResourceInstances.html#update

Kingpin Documentation, Release 0.3.0

[Update my array (DRY Mode)] Verifying that array "new" exists
[Update my array (DRY Mode)] Array "new" not found -- creating a mock.
[Update my array (DRY Mode)] Would have updated "<mocked array new>"
with params: {'server_array[associate_public_ip_address]': true,

'server_array[image_href]': '/image/href/'}

class kingpin.actors.rightscale.server_array.Terminate(*args, **kwargs)
Terminate all instances in a ServerArray

Terminates all instances for a ServerArray in RightScale marking the array disabled.

Options

Array (str) The name of the ServerArray to destroy

Exact (bool) Whether or not to search for the exact array name. (default: true)

Strict (bool) Whether or not to fail if the ServerArray does not exist. (default: true)

Examples

{ "desc": "Terminate my array",
"actor": "rightscale.server_array.Terminate",
"options": {

"array": "my-array"
}

}

{ "desc": "Terminate many arrays",
"actor": "rightscale.server_array.Terminate",
"options": {

"array": "array-prefix",
"exact": false,

}
}

Dry Mode

Dry mode still validates that the server array you want to terminate is actually gone. If you want to bypass this
check, then set the warn_on_failure flag for the actor.

class kingpin.actors.rightscale.server_array.Destroy(*args, **kwargs)
Destroy a ServerArray in RightScale

Destroys a ServerArray in RightScale by first invoking the Terminate actor, and then deleting the array as soon
as all of the running instances have been terminated.

Options

Array (str) The name of the ServerArray to destroy

Exact (bool) Whether or not to search for the exact array name. (default: true)

Strict (bool) Whether or not to fail if the ServerArray does not exist. (default: true)

Examples

{ "desc": "Destroy my array",
"actor": "rightscale.server_array.Destroy",
"options": {

"array": "my-array"
}

}

72 Chapter 6. Full Module Docs

Kingpin Documentation, Release 0.3.0

{ "desc": "Destroy many arrays",
"actor": "rightscale.server_array.Destroy",
"options": {

"array": "array-prefix",
"exact": false,

}
}

Dry Mode

In Dry mode this actor does search for the array, but allows it to be missing because its highly likely that the
array does not exist yet. If the array does not exist, a mocked array object is created for the rest of the execution.

During the rest of the execution, the code bypasses making any real changes and just tells you what changes it
would have made.

Example dry output:

[Destroy Test (DRY Mode)] Beginning
[Destroy Test (DRY Mode)] Terminating array before destroying it.
[Destroy Test (terminate) (DRY Mode)] Array "my-array" not found --
creating a mock.
[Destroy Test (terminate) (DRY Mode)] Disabling Array "my-array"
[Destroy Test (terminate) (DRY Mode)] Would have terminated all array
"<mocked array my-array>" instances.
[Destroy Test (terminate) (DRY Mode)] Pretending that array <mocked
array my-array> instances are terminated.
[Destroy Test (DRY Mode)] Pretending to destroy array "<mocked array
my-array>"
[Destroy Test (DRY Mode)] Finished successfully. Result: True

class kingpin.actors.rightscale.server_array.Launch(*args, **kwargs)
Launch instances in a ServerArray

Launches instances in an existing ServerArray and waits until that array has become healthy before returning.
Healthy means that the array has at least the user-specified count or min_count number of instances running
as defined by the array definition in RightScale.

Options

Array (str) The name of the ServerArray to launch

Count (str, int) Optional number of instance to launch. Defaults to min_count of the array.

Enable (bool) Should the autoscaling of the array be enabled? Settings this to false, or omitting
the parameter will not disable an enabled array.

Exact (bool) Whether or not to search for the exact array name. (default: true)

Examples

{ "desc": "Enable array and launch it",
"actor": "rightscale.server_array.Launch",
"options": {

"array": "my-array",
"enable": true

}
}

{ "desc": "Enable arrays starting with my-array and launch them",
"actor": "rightscale.server_array.Launch",
"options": {

6.17. kingpin.actors.rightscale.server_array 73

https://docs.python.org/library/array.html#module-array

Kingpin Documentation, Release 0.3.0

"array": "my-array",
"enable": true,
"exact": false

}
}

{ "desc": "Enable array and launch 1 instance",
"actor": "rightscale.server_array.Launch",
"options": {

"array": "my-array",
"count": 1

}
}

Dry Mode

In Dry mode this actor does search for the array, but allows it to be missing because its highly likely that the
array does not exist yet. If the array does not exist, a mocked array object is created for the rest of the execution.

During the rest of the execution, the code bypasses making any real changes and just tells you what changes it
would have made.

Example dry output:

[Launch Array Test #0 (DRY Mode)] Verifying that array "my-array" exists
[Launch Array Test #0 (DRY Mode)] Array "my-array" not found -- creating

a mock.
[Launch Array Test #0 (DRY Mode)] Enabling Array "my-array"
[Launch Array Test #0 (DRY Mode)] Launching Array "my-array" instances
[Launch Array Test #0 (DRY Mode)] Would have launched instances of array

<MagicMock name='my-array.self.show().soul.__getitem__()'
id='4420453200'>

[Launch Array Test #0 (DRY Mode)] Pretending that array <MagicMock
name='my-array.self.show().soul.__getitem__()' id='4420453200'>
instances are launched.

class kingpin.actors.rightscale.server_array.Execute(*args, **kwargs)
Executes a RightScale script/recipe on a ServerArray

Executes a RightScript or Recipe on a set of hosts in a ServerArray in RightScale using individual calls to the
live running instances. These can be found in your RightScale account under Design -> RightScript or Design
-> Cookbooks

The RightScale API offers a multi_run_executable method that can be used to run a single script on all servers
in an array – but unfortunately this API method provides no way to monitor the progress of the individual jobs
on the hosts. Furthermore, the method often executes on recently terminated or terminating hosts, which throws
false-negative error results.

Our actor explicitly retrieves a list of the operational hosts in an array and kicks off individual execution tasks
for every host. It then tracks the execution of those tasks from start to finish and returns the results.

Options

Array (str) The name of the ServerArray to operate on

Script (str) The name of the RightScript or Recipe to execute

Expected_runtime (str, int) Expected number of seconds to execute. (default: 5)

Concurrency Max number of concurrent executions. This will fire off N executions in parallel, and
continue with the remained as soon as the first execution is done. This is faster than creating N

74 Chapter 6. Full Module Docs

Kingpin Documentation, Release 0.3.0

Sync executions. Note: When applied to multiple (M) arrays cumulative concurrency accross
all arrays will remain at N. It will not be M x N.

Inputs (dict) Dictionary of Key/Value pairs to use as inputs for the script

Exact (str) Boolean whether or not to search for the exact array name. (default: true)

Examples

{ "desc":" Execute script on my-array",
"actor": "rightscale.server_array.Execute",
"options": {

"array": "my-array",
"script": "connect to elb",
"expected_runtime": 3,
"inputs": {

"ELB_NAME": "text:my-elb"
}

}
}

Dry Mode

In Dry mode this actor does search for the array, but allows it to be missing because its highly likely that the
array does not exist yet. If the array does not exist, a mocked array object is created for the rest of the execution.

During the rest of the execution, the code bypasses making any real changes and just tells you what changes it
would have made.

Example dry output:

[Destroy Test (DRY Mode)] Verifying that array "my-array" exists
[Execute Test (DRY Mode)]

kingpin.actors.rightscale.server_array.Execute Initialized
[Execute Test (DRY Mode)] Beginning execution
[Execute Test (DRY Mode)] Verifying that array "my-array" exists
[Execute Test (DRY Mode)] Would have executed "Connect instance to ELB"

with inputs "{'inputs[ELB_NAME]': 'text:my-elb'}" on "my-array".
[Execute Test (DRY Mode)] Returning result: True

6.18 kingpin.actors.rollbar

The Rollbar Actor allows you to post Deploy messages to Rollbar when you execute a code deployment.

Required Environment Variables

ROLLBAR_TOKEN Rollbar API Token

class kingpin.actors.rollbar.RollbarBase(*args, **kwargs)
Simple Rollbar Base Abstract Actor

class kingpin.actors.rollbar.Deploy(*args, **kwargs)
Posts a Deploy message to Rollbar.

https://rollbar.com/docs/deploys_other/

API Token

You must use an API token created in your Project Access Tokens account settings section. This token should
have post_server_item permissions for the actual deploy, and read permissions for the Dry run.

Options

6.18. kingpin.actors.rollbar 75

https://docs.python.org/library/array.html#module-array
https://rollbar.com/docs/deploys_other/

Kingpin Documentation, Release 0.3.0

Environment The environment to deploy to

Revision The deployment revision

Local_username The user who initiated the deploy

Rollbar_username (Optional) The Rollbar Username to assign the deploy to

Comment (Optional) Comment describing the deploy

Examples

{ "actor": "rollbar.Deploy",
"desc": "update rollbar deploy",
"options": {

"environment": "Prod",
"revision": "%DEPLOY%",
"local_username": "Kingpin",
"rollbar_username": "Kingpin",
"comment": "some comment %DEPLOY%"

}
}

Dry Mode

Accesses the Rollbar API and validates that the token can access your project.

6.19 kingpin.actors.slack

The Slack Actors allow you to send messages to a Slack channel at stages during your job execution. The actor
supports dry mode by validating that the configured API Token has access to execute the methods, without actually
sending the messages.

Required Environment Variables

SLACK_TOKEN Slack API Token

SLACK_NAME Slack message from name (defaults to Kingpin)

class kingpin.actors.slack.SlackBase(*args, **kwargs)
Simple Slack Abstract Base Object

class kingpin.actors.slack.Message(*args, **kwargs)
Sends a message to a channel in Slack.

Options

Channel The string-name of the channel to send a message to

Message String of the message to send

Examples

{ "desc": "Let the Engineers know things are happening",
"actor": "slack.Message",
"options": {

"channel": "#operations",
"message": "Beginning Deploy: %VER%"

}
}

76 Chapter 6. Full Module Docs

Kingpin Documentation, Release 0.3.0

Dry Mode

Fully supported – does not actually send messages to a room, but validates that the API credentials would have
access to send the message using the Slack auth.test API method.

This package provides a quick way of creating custom API clients for JSON-based REST APIs. The majority of the
work is in the creation of a _CONFIG dictionary for the class. This dictionary dynamically configures the object at
instantiation time with the appropriate @gen.coroutine wrapped HTTP fetch methods.

See the documentation in docs/DEVELOPMENT.md for more details on how to use this package to create your own
API client.

kingpin.actors.support.api.create_http_method(name, http_method)
Creates the get/put/delete/post coroutined-method for a resource.

This method is called during the __init__ of a RestConsumer object. The method creates a custom method thats
handles a GET, PUT, POST or DELETE through the Tornado HTTPClient class.

Args: http_method: Name of the method (get, put, post, delete)

Returns: A method appropriately configured and named.

kingpin.actors.support.api.create_method(name, config)
Creates a RestConsumer object.

Configures a fresh RestConsumer object with the supplied configuration bits. The configuration includes in-
formation about the name of the method being consumed and the configuration of that method (which HTTP
methods it supports, etc).

The final created method accepts any args (*args, **kwargs) and passes them on to the RestCon-
sumer object being created. This allows for passing in unique resource identifiers (ie, the ‘%res%’ in
‘/v2/rooms/%res%/history’).

Args: name: The name passed into the RestConsumer object config: The config passed into the RestConsumer
object

Returns: A method that returns a fresh RestConsumer object

class kingpin.actors.support.api.RestConsumer(name=None, config=None, client=None,
*args, **kwargs)

An abstract object that self-defines its own API access methods.

At init time, this object reads its _CONFIG and pre-defines all of the API access methods that have been
described. It does not handle actual HTTP calls directly, but is passed in a client object (anything that
subclasses the RestClient class) and leverages that for the actual web calls.

class kingpin.actors.support.api.RestClient(client=None, headers=None)
Very simple REST client for the RestConsumer. Implements a AsyncHTTPClient(), some convinience methods
for URL escaping, and a single fetch() method that can handle GET/POST/PUT/DELETEs.

This code is nearly identical to the kingpin.actors.base.BaseHTTPActor class, but is not actor-specific.

Args: headers: Headers to pass in on every HTTP request

class kingpin.actors.support.api.SimpleTokenRestClient(tokens, *args, **kwargs)
Simple RestClient that appends a ‘token’ to every web request for authentication. Used in most simple APIs
where a token is provided to the end user.

Args:

tokens: (dict) A dict with the token name/value(s) to append to every we request.

6.19. kingpin.actors.slack 77

Kingpin Documentation, Release 0.3.0

6.20 kingpin.actors.utils

Misc methods for dealing with Actors.

kingpin.actors.utils.get_actor(config, dry)
Returns an initialized Actor object.

Args:

config: A dictionary of configuration data that conforms to our v1 schema in kingpin.schema. Looks
like this:

{ ‘desc’: <string description of actor>, ‘actor’: <string name of actor> ‘options’: <dict of options to
pass to actor> ‘warn_on_failure’: <bool> ‘condition’: <string or bool> }

dry: Boolean whether or not in Dry mode warn_on_failure: Boolean

Returns: <actor object>

kingpin.actors.utils.get_actor_class(actor)
Returns a Class Reference to an Actor by string name.

Args: actor: String name of the actor to find.

Returns: <Class Ref to Actor>

class kingpin.constants.REQUIRED
Meta class to identify required arguments for actors.

exception kingpin.exceptions.KingpinException
Base Exception

exception kingpin.exceptions.InvalidJSON
Raised when an invalid JSON schema was detected

kingpin.schema.validate(config)
Validates the JSON against our schemas.

TODO: Support multiple schema versions

Args: config: Dictionary of parsed JSON

Returns: None: if all is well

Raises: Execption if something went wrong.

6.21 kingpin.utils

Common package for utility functions.

kingpin.utils.str_to_class(string)
Method that converts a string name into a usable Class name

This is used to take the ‘actor’ value from the JSON object and convert it into a valid object reference.

Args:

cls: String name of the wanted class and package. eg: kingpin.actor.foo.bar

Returns: A reference to the actual Class to be instantiated

kingpin.utils.setup_root_logger(level=’warn’, syslog=None, color=False)
Configures the root logger.

78 Chapter 6. Full Module Docs

Kingpin Documentation, Release 0.3.0

Args: level: Logging level string (‘warn’ is default) syslog: String representing syslog facility to output to. If
empty, logs are written to console. color: Colorize the log output

Returns: A root Logger object

kingpin.utils.super_httplib_debug_logging()
Enables DEBUG logging deep in HTTPLIB.

HTTPLib by default doens’t log out things like the raw HTTP headers, cookies, response body, etc – even when
your main logger is in DEBUG mode. This is because its a security risk, as well as just highly verbose.

For the purposes of debugging though, this can be useful. This method enables deep debug logging of the
HTTPLib web requests. This is highly insecure, but very useful when troubleshooting failures with remote API
endpoints.

Returns: Requests ‘logger’ object (mainly for unit testing)

kingpin.utils.exception_logger(func)
Explicitly log Exceptions then Raise them.

Logging Exceptions and Tracebacks while inside of a thread is broken in the Tornado futures package for Python
2.7. It swallows most of the traceback and only gives you the raw exception object. This little helper method
allows us to throw a log entry with the full traceback before raising the exception.

kingpin.utils.retry(excs, retries=3, delay=0.25)
Coroutine-compatible Retry Decorator.

This decorator provides a simple retry mechanism that looks for a particular set of exceptions and retries async
tasks in the event that those exceptions were caught.

Example usage:

>>> @gen.coroutine
... @retry(excs=(Exception), retries=3)
... def login(self):
... raise gen.Return()

Args: excs: A single (or tuple) exception type to catch. retries: The number of times to try the operation in
total. delay: Time (in seconds) to wait between retries

kingpin.utils.tornado_sleep(*args, **kwargs)
Async method equivalent to sleeping.

Args: seconds: Float seconds. Default 1.0

kingpin.utils.populate_with_tokens(string, tokens, left_wrapper=’%’, right_wrapper=’%’,
strict=True)

Insert token variables into the string.

Will match any token wrapped in ‘%’s and replace it with the value of that token.

Args: string: string to modify. tokens: dictionary of key:value pairs to inject into the string. left_wrapper: the
character to use as the START of a token right_wrapper: the character to use as the END of a token strict:
(bool) whether or not to make sure all tokens were replaced

Example: export ME=biz

string=’foo %ME% %bar%’ populate_with_tokens(string, os.environ) # ‘foo biz %bar%’

kingpin.utils.convert_json_to_dict(json_file, tokens)
Converts a JSON file to a config dict.

Reads in a JSON file, swaps out any environment variables that have been used inside the JSON, and then returns
a dictionary.

6.21. kingpin.utils 79

Kingpin Documentation, Release 0.3.0

Args: json_file: Path to the JSON file to import, or file instance. tokens: dictionary to pass to popu-
late_with_tokens.

Returns: <Dictonary of Config Data>

kingpin.utils.create_repeating_log(logger, message, handle=None, **kwargs)
Create a repeating log message.

This function sets up tornado to repeatedly log a message in a way that does not need to be yield-ed.

Example:

>>> yield do_tornado_stuff(1)
>>> log_handle = create_repeating_log('Computing...')
>>> yield do_slow_computation_with_insufficient_logging()
>>> clear_repeating_log(log_handle)

This is similar to javascript’s setInterval() and clearInterval().

Args: message: String to pass to log.info() kwargs: values accepted by datetime.timedelta namely seconds, and
milliseconds.

Must be cleared via clear_repeating_log() Only handles one interval per actor.

kingpin.utils.clear_repeating_log(handle)
Stops the timeout function from being called.

• genindex

• modindex

• search

80 Chapter 6. Full Module Docs

Python Module Index

a
kingpin.actors.aws.base, 51
kingpin.actors.aws.cloudformation, 51
kingpin.actors.aws.elb, 52
kingpin.actors.aws.iam, 55
kingpin.actors.aws.settings, 56
kingpin.actors.aws.sqs, 56

b
kingpin.actors.base, 57

c
kingpin.constants, 78

e
kingpin.actors.exceptions, 58
kingpin.exceptions, 78

g
kingpin.actors.group, 59

h
kingpin.actors.hipchat, 61

l
kingpin.actors.librato, 62

m
kingpin.actors.misc, 63

p
kingpin.actors.packagecloud, 65
kingpin.actors.pingdom, 66

r
kingpin.actors.rightscale.api, 67
kingpin.actors.rightscale.base, 68
kingpin.actors.rightscale.server_array,

68
kingpin.actors.rollbar, 75

s
kingpin.actors.slack, 76
kingpin.actors.support.api, 77
kingpin.schema, 78

u
kingpin.actors.utils, 77
kingpin.utils, 78

v
kingpin.version, 80

81

Kingpin Documentation, Release 0.3.0

82 Python Module Index

Index

A
ActorException, 58
ActorTimedOut, 59
Annotation (class in kingpin.actors.librato), 63
ArrayAlreadyExists, 68
ArrayNotFound, 68
Async (class in kingpin.actors.group), 60

B
BadRequest, 59
BaseActor (class in kingpin.actors.base), 58
BaseGroupActor (class in kingpin.actors.group), 59

C
CertNotFound, 53
clear_repeating_log() (in module kingpin.utils), 80
Clone (class in kingpin.actors.rightscale.server_array), 68
CloudFormationBaseActor (class in king-

pin.actors.aws.cloudformation), 51
CloudFormationError, 51
convert_json_to_dict() (in module kingpin.utils), 79
Create (class in kingpin.actors.aws.cloudformation), 51
Create (class in kingpin.actors.aws.sqs), 56
create_http_method() (in module king-

pin.actors.support.api), 77
create_method() (in module kingpin.actors.support.api),

77
create_repeating_log() (in module kingpin.utils), 80

D
Delete (class in kingpin.actors.aws.cloudformation), 52
Delete (class in kingpin.actors.aws.sqs), 56
Delete (class in kingpin.actors.packagecloud), 65
DeleteByDate (class in kingpin.actors.packagecloud), 65
DeleteCert (class in kingpin.actors.aws.iam), 55
Deploy (class in kingpin.actors.rollbar), 75
DeregisterInstance (class in kingpin.actors.aws.elb), 54
Destroy (class in kingpin.actors.rightscale.server_array),

72

E
ELBBaseActor (class in kingpin.actors.aws.elb), 53
ELBNotFound, 51
exception_logger() (in module kingpin.utils), 79
Execute (class in kingpin.actors.rightscale.server_array),

74

G
GenericHTTP (class in kingpin.actors.misc), 64
get_actor() (in module kingpin.actors.utils), 78
get_actor_class() (in module kingpin.actors.utils), 78

H
HipchatBase (class in kingpin.actors.hipchat), 62
HTTPBaseActor (class in kingpin.actors.base), 58

I
IAMBaseActor (class in kingpin.actors.aws.iam), 55
InvalidActor, 59
InvalidCredentials, 59
InvalidInputs, 68
InvalidJSON, 78
InvalidMetaData, 51
InvalidOptions, 59
InvalidTemplate, 51
is_retriable_exception() (in module king-

pin.actors.aws.settings), 56

K
kingpin.actors.aws.base (module), 51
kingpin.actors.aws.cloudformation (module), 51
kingpin.actors.aws.elb (module), 52
kingpin.actors.aws.iam (module), 55
kingpin.actors.aws.settings (module), 56
kingpin.actors.aws.sqs (module), 56
kingpin.actors.base (module), 57
kingpin.actors.exceptions (module), 58
kingpin.actors.group (module), 59
kingpin.actors.hipchat (module), 61
kingpin.actors.librato (module), 62

83

Kingpin Documentation, Release 0.3.0

kingpin.actors.misc (module), 63
kingpin.actors.packagecloud (module), 65
kingpin.actors.pingdom (module), 66
kingpin.actors.rightscale.api (module), 67
kingpin.actors.rightscale.base (module), 68
kingpin.actors.rightscale.server_array (module), 68
kingpin.actors.rollbar (module), 75
kingpin.actors.slack (module), 76
kingpin.actors.support.api (module), 77
kingpin.actors.utils (module), 77
kingpin.constants (module), 78
kingpin.exceptions (module), 78
kingpin.schema (module), 78
kingpin.utils (module), 78
kingpin.version (module), 80
KingpinException, 78

L
Launch (class in kingpin.actors.rightscale.server_array),

73

M
Macro (class in kingpin.actors.misc), 63
Message (class in kingpin.actors.hipchat), 62
Message (class in kingpin.actors.slack), 76

O
option() (kingpin.actors.base.BaseActor method), 58

P
p2f() (in module kingpin.actors.aws.elb), 53
PackagecloudBase (class in king-

pin.actors.packagecloud), 65
Pause (class in kingpin.actors.pingdom), 67
PingdomBase (class in kingpin.actors.pingdom), 67
populate_with_tokens() (in module kingpin.utils), 79

Q
QueueDeletionFailed, 56
QueueNotFound, 56

R
readfile() (kingpin.actors.base.BaseActor method), 58
RecoverableActorFailure, 59
RegisterInstance (class in kingpin.actors.aws.elb), 54
REQUIRED (class in kingpin.constants), 78
RestClient (class in kingpin.actors.support.api), 77
RestConsumer (class in kingpin.actors.support.api), 77
retry() (in module kingpin.utils), 79
RightScaleBaseActor (class in king-

pin.actors.rightscale.base), 68
RollbarBase (class in kingpin.actors.rollbar), 75

S
ServerArrayBaseActor (class in king-

pin.actors.rightscale.server_array), 68
ServerArrayException, 68
SetCert (class in kingpin.actors.aws.elb), 53
setup_root_logger() (in module kingpin.utils), 78
SimpleTokenRestClient (class in king-

pin.actors.support.api), 77
SlackBase (class in kingpin.actors.slack), 76
Sleep (class in kingpin.actors.misc), 64
StackAlreadyExists, 51
StackNotFound, 51
str_to_class() (in module kingpin.utils), 78
super_httplib_debug_logging() (in module kingpin.utils),

79
Sync (class in kingpin.actors.group), 59

T
TaskExecutionFailed, 68
Terminate (class in king-

pin.actors.rightscale.server_array), 72
timeout() (kingpin.actors.base.BaseActor method), 58
timer() (kingpin.actors.base.BaseActor method), 58
Topic (class in kingpin.actors.hipchat), 62
tornado_sleep() (in module kingpin.utils), 79

U
UnparseableResponseFromEndpoint, 59
Unpause (class in kingpin.actors.pingdom), 67
UnrecoverableActorFailure, 59
Update (class in kingpin.actors.rightscale.server_array),

69
UpdateNextInstance (class in king-

pin.actors.rightscale.server_array), 71
UploadCert (class in kingpin.actors.aws.iam), 55

V
validate() (in module kingpin.schema), 78

W
WaitForPackage (class in kingpin.actors.packagecloud),

66
WaitUntilEmpty (class in kingpin.actors.aws.sqs), 57
WaitUntilHealthy (class in kingpin.actors.aws.elb), 53

84 Index

	Installation
	Github Checkout/Install
	Direct PIP Install
	Zip File Packaging

	Basic Use
	Credentials
	JSON-based DSL
	Validation
	The Script

	Actors
	Amazon Web Services
	Documentation
	CloudFormation
	Elastic Load Balancing (ELB)
	Identity and Access Management (IAM)
	Simple Queue Service (SQS)

	Grouping Actors
	Async
	Sync

	Hipchat
	Message
	Topic

	Librato
	Annotation

	Miscellaneous
	Macro
	Sleep
	GenericHTTP

	PackageCloud
	Documentation
	Delete
	DeleteByDate
	WaitForPackage

	Pingdom
	Pause
	Unpause

	RightScale
	Documentation
	Deployment
	Alert Specs
	Server Arrays
	Multi Cloud Images

	Rollbar
	Deploy

	Slack
	Message

	Security
	URLLIB3 Warnings Disabled

	Development
	Setting up your Environment
	Create your VirtualEnvironment
	Check out the code
	Install the test-specific dependencies

	Testing
	Unit Tests
	Integration Tests

	Class/Object Architecture
	Setup
	Actor Design
	Hello World Actor Example
	Required Options
	Required Methods
	Helper Methods/Objects
	self.option
	Exception Handling

	Simple API Access Objects
	HTTPBin Actor with the RestConsumer
	Exception Handling in HTTP Requests

	Full Module Docs
	kingpin.actors.aws.base
	kingpin.actors.aws.cloudformation
	kingpin.actors.aws.elb
	kingpin.actors.aws.iam
	kingpin.actors.aws.settings
	kingpin.actors.aws.sqs
	kingpin.actors.base
	kingpin.actors.exceptions
	kingpin.actors.group
	kingpin.actors.hipchat
	kingpin.actors.librato
	kingpin.actors.misc
	kingpin.actors.packagecloud
	kingpin.actors.pingdom
	kingpin.actors.rightscale.api
	kingpin.actors.rightscale.base
	kingpin.actors.rightscale.server_array
	kingpin.actors.rollbar
	kingpin.actors.slack
	kingpin.actors.utils
	kingpin.utils

	Python Module Index

